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Decision Trees

A decision tree model is an interpretable model in which the
final output is based on a series of comparisons of the values
of predictors against threshold values.

Graphically, decision trees can be represented by a flow chart.

Geometrically, the model partitions the feature space
wherein each region is assigned a response variable value
based on the training points contained in the region.
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Learning Algorithm

To learn a decision tree model, we take a greedy
approach:

1. Start with an empty decision tree (undivided
feature space)

2. Choose the ‘optimal’ predictor on which to split and
choose the ‘optimal’ threshold value for splitting by
applying a splitting criterion

3. Recurse on on each new node until stopping
condition is met

For classification, we label each region in the model
with the label of the class to which the plurality of the
points within the region belong.

5



Decision Trees for Regression
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Adaptations for Regression

With just two modifications, we can use a decision tree model for
regression:

▶ The three splitting criteria we’ve examined each promoted
splits that were pure - new regions increasingly specialized in
a single class.

For classification, purity of the regions is a good indicator the
performance of the model.

For regression, we want to select a splitting criterion that
promotes splits that improves the predictive accuracy of the
model as measured by, say, the MSE.

▶ For regression with output in R, we want to label each region
in the model with a real number - typically the average of the
output values of the training points contained in the region.
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Learning Regression Trees

The learning algorithms for decision trees in regression tasks is:

1. Start with an empty decision tree (undivided feature space)

2. Choose a predictor j on which to split and choose a threshold
value tj for splitting such that the weighted average MSE of
the new regions as smallest possible:

argminj,tj

N1

N
MSE(R1) +

N2

N
MSE(R2)

or equivalently,

argminj,tj

N1

N
Var[y|x ∈ R1] +

N2

N
Var[y|x ∈ R2]

whereNi is the number of training points in Ri andN is the
number of points in R.

3. Recurse on on each new node until stopping condition is met
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Stopping Conditions

Most of the stopping conditions, like maximum depth
or minimum number of points in region, we saw last
time can still be applied.

In the place of purity gain, we can instead compute
accuracy gain for splitting a region R

Gain(R) = ∆(R) = MSE(R)−N1

N
MSE(R1)−

N2

N
MSE(R2)

and stop the tree when the gain is less than some
pre-defined threshold.
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Expressiveness of Decision Trees

We’ve seen that classification trees approximate boundaries
in the feature space that separate classes.

Regression trees, on the other hand, define simple functions
or step functions, functions that are defined on partitions of
the feature space and are constant over each part.
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Expressiveness of Decision Trees

For a fine enough partition of the feature space, these
functions can approximate complex non-linear
functions.
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Bagging
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Limitations of Decision Tree Models

Decision trees models are highly interpretable and fast
to train, using our greedy learning algorithm.

However, in order to capture a complex decision
boundary (or to approximate a complex function), we
need to use a large tree (since each time we can only
make axis aligned splits).

We’ve seen that large trees have high variance and are
prone to overfitting.

For these reasons, in practice, decision tree models
often underperforms when compared with other
classification or regression methods.
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Bagging

One way to adjust for the high variance of the output of an
experiment is to perform the experiment multiple times and
then average the results.

The same idea can be applied to high variance models:

1. (Bootstrap) we generate multiple samples of training
data, via bootstrapping. We train a full decision tree on
each sample of data.

2. (Aggregate) for a given input, we output the averaged
outputs of all the models for that input.

For classification, we return the class that is outputted
by the plurality of the models.

This method is called Bagging (Breiman, 1996), short for, of
course, Bootstrap Aggregating.
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Bagging

Note that bagging enjoys the benefits of

1. High expressiveness - by using full trees each
model is able to approximate complex functions
and decision boundaries.

2. Low variance - averaging the prediction of all the
models reduces the variance in the final prediction,
assuming that we choose a sufficiently large
number of trees.
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Bagging
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Bagging

However, the major drawback of bagging (and other
ensemble methods that we will study) is that the
averaged model is no longer easily interpretable - i.e.
one can no longer trace the ‘logic’ of an output through
a series of decisions based on predictor values!
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Bagging
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Out-of-Bag Error

Bagging is an example of an ensemble method, a method of building
a single model by training and aggregating multiple models.

With ensemble methods, we get a new metric for assessing the
predictive performance of the model, the out-of-bag error.

Given a training set and an ensemble of models each trained on a
bootstrap sample, we compute the out-of-bag error of the averaged
model by

1. for each point in the training set, we average the predicted
output for this point over the models whose bootstrap
training set excludes this point.

We compute the error or squared error of this averaged
prediction. Call this the point-wise out-of-bag error.

2. we average the point-wise out-of-bag error over the full
training set.
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Random Forests
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Improving on Bagging

In practice, the ensembles of trees in Bagging tend to be
highly correlated.

Suppose we have an extremely strong predictor, xj , in
the training set amongst moderate predictors. Then the
greedy learning algorithm ensures that most of the
models in the ensemble will choose to split on xj in
early iterations.

That is, each tree in the ensemble is identically
distributed, with the expected output of the averaged
model the same as the expected output of any one of
the trees.
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Improving on Bagging

Recall, for B number of identically but not
independently distributed variables with pairwise
correlation ρ and variance σ2, the variance of their mean
is

ρσ2 +
1− ρ

B
σ2.

As we increase B, the second term vanishes but the
first term remains.

Consequently, variance reduction in bagging is limited
by the fact that we are averaging over highly correlated
trees.
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Random Forests

Random Forest is a modified form of bagging that
creates ensembles of independent decision trees.

To de-correlate the trees, we:

1. train each tree on a separate bootstrap sample of
the full training set (same as in bagging)

2. for each tree, at each split, we randomly select a set
of J ′ predictors from the full set of predictors.

From amongst the J ′ predictors, we select the
optimal predictor and the optimal corresponding
threshold for the split.
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Tuning Random Forests

Random forest models have multiple hyper-parameters
to tune:

1. the number of predictors to randomly select at
each split

2. the total number of trees in the ensemble

3. the minimum leaf node size

In theory, each tree in the random forest is full, but in
practice this can be computationally expensive (and
added redundancies in the model), thus, imposing a
minimum node size is not unusual.
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Tuning Random Forests

There are standard (default) values for each of random
forest hyper-parameters recommended by long time
practitioners, but generally these parameters should be
tuned through cross validation (making them data and
problem dependent).

Using out-of-bag errors, training and cross validation
can be done in a single sequence - we cease training
once the out-of-bag error stabilizes
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Variable Importance

Calculate the total amount that the MSE or Gini index or
entropy is decreased due to splits over a given
predictor, averaged over all trees.
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Variable Importance
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Example

[compare RF, Bagging and Tree]x
[test for variable importance]
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Final Thoughts on Random Forests

▶ When the number of predictors is large, but the number
of relevant predictors is small, random forests can
perform poorly.

In each split, the chances of selected a relevant
predictor will be low and hence most trees in the
ensemble will be weak models.
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Final Thoughts on Random Forests

▶ Increasing the number of trees in the ensemble
generally does not increase the risk of overfitting.

Again, by decomposing the generalization error in terms
of bias and variance, we see that increasing the number
of trees produces a model that is at least as robust as a
single tree.

However, if the number of trees is too large, then the
trees in the ensemble may become more correlated,
increase the variance.
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