

FACULTAD DE MEDICINA UNIVERSIDAD DE CHILE



#### MAURICIO CERDA + ASHISH MAHABAL

#### **DEEP LEARNING**

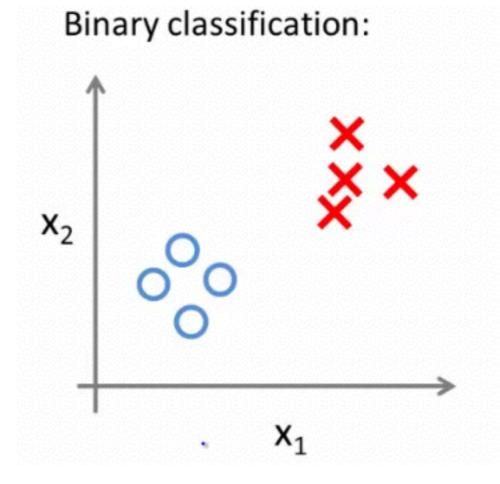
- La Serena, 8/28/2017 -

#### Outline

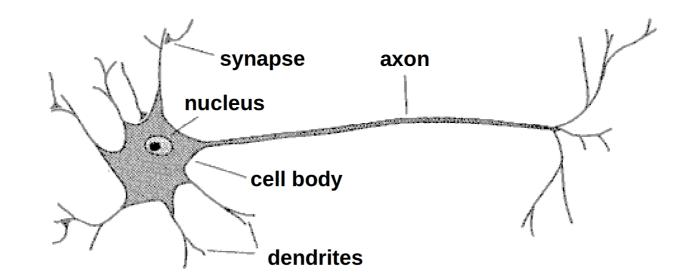
- Perceptron & Multilayer Perceptron
- Deep Learning
- Demo

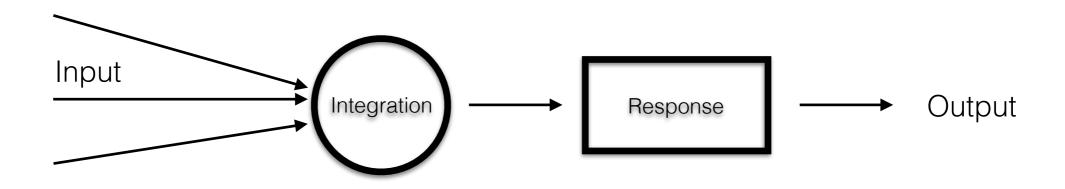
# Supervised learning

• Objective: learn input/output association.

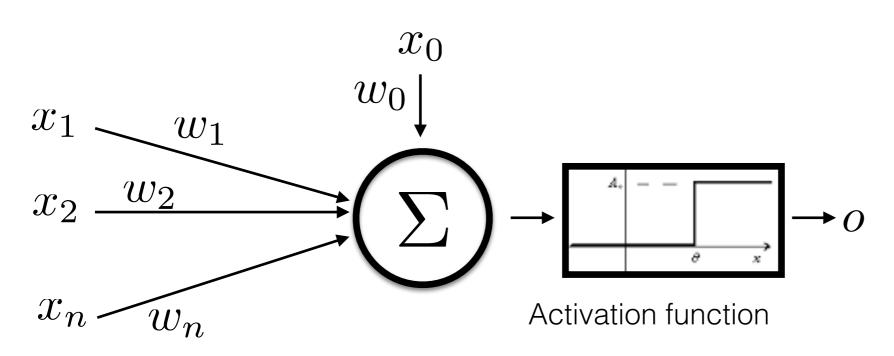


#### The human brain

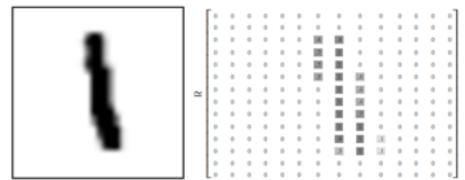




• A (functional) model of how neurons work.







MNIST digits 010000000

Real and artificial neurons

### Learning rule

• How to learn with a perceptron?

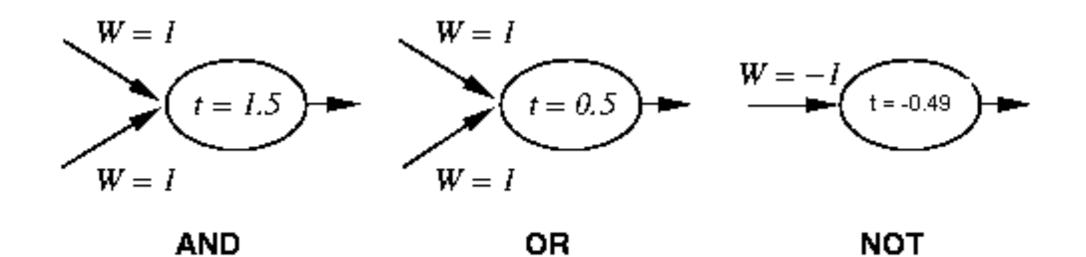
$$w_i = w_i + \Delta w_i$$
$$\Delta w_i = \rho(t - o)x_i$$

where t is the objective,  $\rho$  is the learning rate, o is perceptron output.

- How does it work?
- If the output is correct (t = O), w does not change.
- If the output is incorrect (t != *O*), w will change to make the output as similar as possible to the objective.
- The algorithm will converge if:
  - Data is linearly separable.
  - ho is small enough

#### Example perceptron

• A few examples:



 $x_2$ 

0

0

0

X

0

1

 $x_1$ 

1

0

• Training the AND operation:

Iteration 1, f(x)=x>0.5, w=(0.1, 0.2, 0.3)  $\rho = 0.1$  Iteration 2, f(x)=x>0.5, w=(,,)  $\rho = 0.1$ 

| x1 x2 x3 | <w,x></w,x> | Ο | t | x1 x2 x3 | <b><w,i></w,i></b> | Ο | t |
|----------|-------------|---|---|----------|--------------------|---|---|
| -1 0 0   |             | 0 | 0 | -1 0 0   |                    | 0 | 0 |
| -1 0 1   |             | 0 | 0 | -1 0 1   |                    | 0 | 0 |
| -1 1 0   |             | 0 | 0 | -1 1 0   |                    | 0 | 0 |
| -1 1 1   |             | 0 | 1 | -1 1 1   |                    | 1 | 1 |

 $x_2$ 

0

0

0

X

0

1

 $x_1$ 

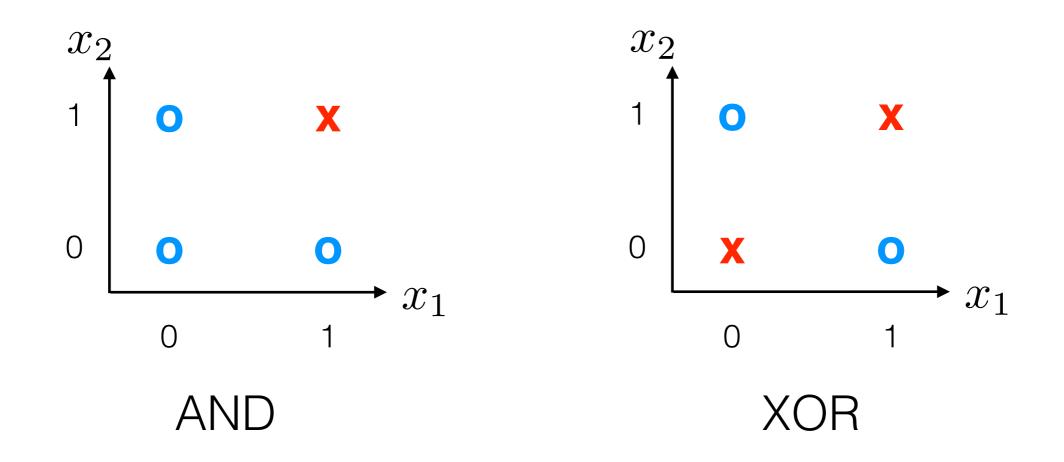
1

0

• Training the AND operation:

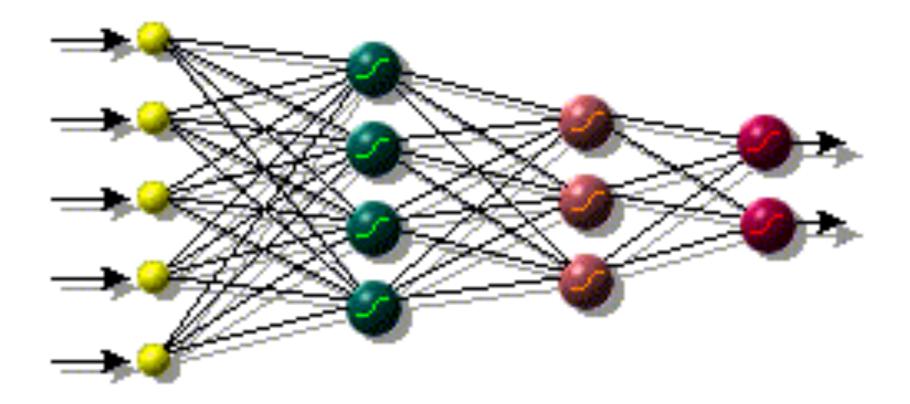
| <b>x1</b> | x2 | <b>x3</b> | <w,x></w,x>        | 0 | t | <b>x1</b> | <b>x2</b> | х3 | <b><w,i></w,i></b> | Ο | t |
|-----------|----|-----------|--------------------|---|---|-----------|-----------|----|--------------------|---|---|
| -1        | 0  | 0         | 0.1*-1+0.2*0+0.3*0 | 0 | 0 | -1        | 0         | 0  | -1*0+0.3*0+0.4*0   | 0 | 0 |
| -1        | 0  | 1         | 0.1*-1+0.2*0+0.3*1 | 0 | 0 | -1        | 0         | 1  | -1*0+0.3*0+0.4*1   | 0 | 0 |
| -1        | 1  | 0         | 0.1*-1+0.2*1+0.3*0 | 0 | 0 | -1        | 1         | 0  | -1*0+0.3*1+0.4*0   | 0 | 0 |
| -1        | 1  | 1         | 0.1*-1+0.2*1+0.3*1 | 0 | 1 | -1        | 1         | 1  | -1*0+0.3*1+0.4*1   | 1 | 1 |

- But perceptron can do only linear separations.
- In the 70-80 researchers hit this problem.



# MultiLayer Perceptron

- What about more layers? (*MultiLayer Perceptron o MLP*)
  - For more complex problems
  - Solve classification problems that are not linearly separable
  - Learning must be propagated between layers



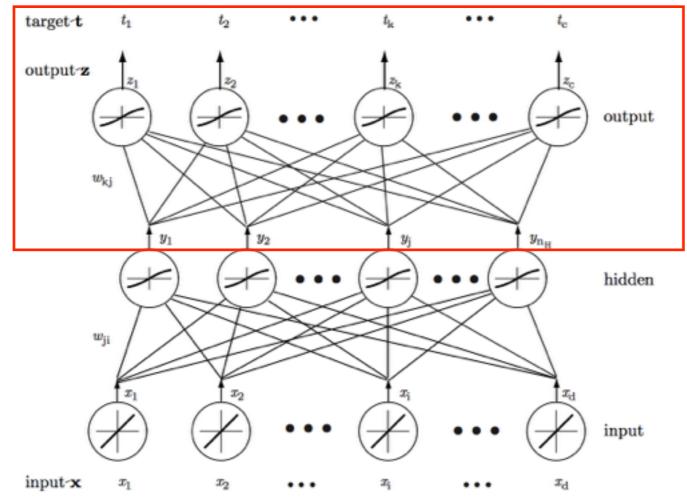
### MLP

| Structure    | Types of<br>Decision Regions                            | Exclusive-OR<br>Problem | Classes with<br>Meshed regions | Most General<br>Region Shapes |
|--------------|---------------------------------------------------------|-------------------------|--------------------------------|-------------------------------|
| Single-Layer | Half Plane<br>Bounded By<br>Hyperplane                  | ABBA                    | BA                             |                               |
| Two-Layer    | Convex Open<br>Or<br>Closed Regions                     | A B<br>B A              | BA                             |                               |
| Three-Layer  | Arbitrary<br>(Complexity<br>Limited by No.<br>of Nodes) | ABBA                    | BA                             |                               |

• Three layers are enough in theory, but more may be useful in practice.

## MLP: Backpropagation

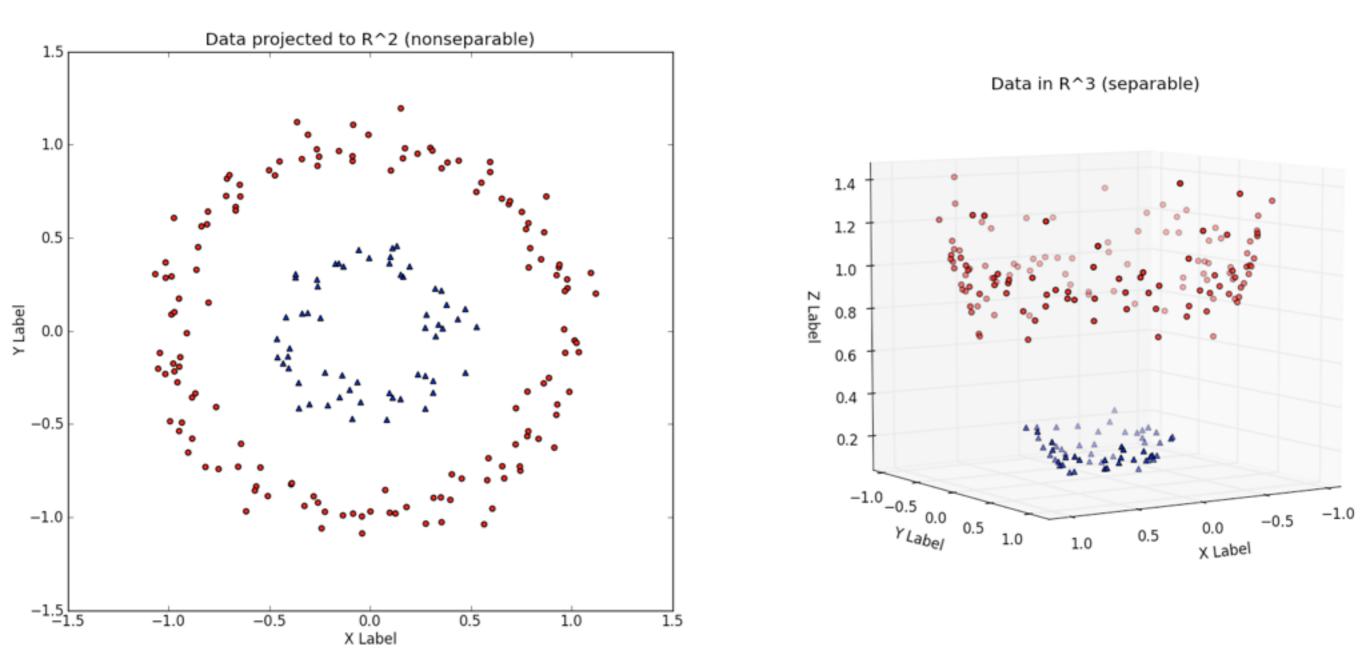
• In a multilayer network:

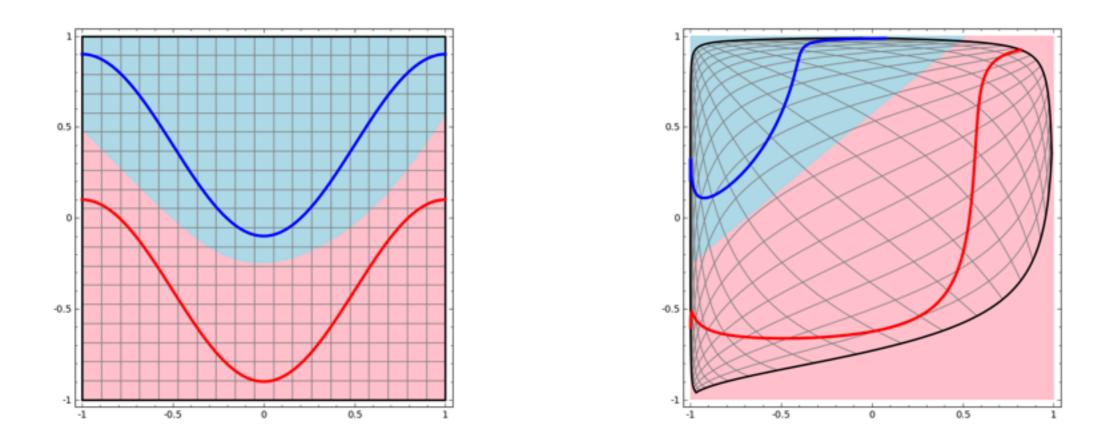


• Learning rule is:

$$\Delta w_{kj} = -\frac{\partial J}{\partial net_k} \frac{\partial net_k}{\partial w_{kj}} = \rho(t_k - z_k) y_j f'(net_k)$$

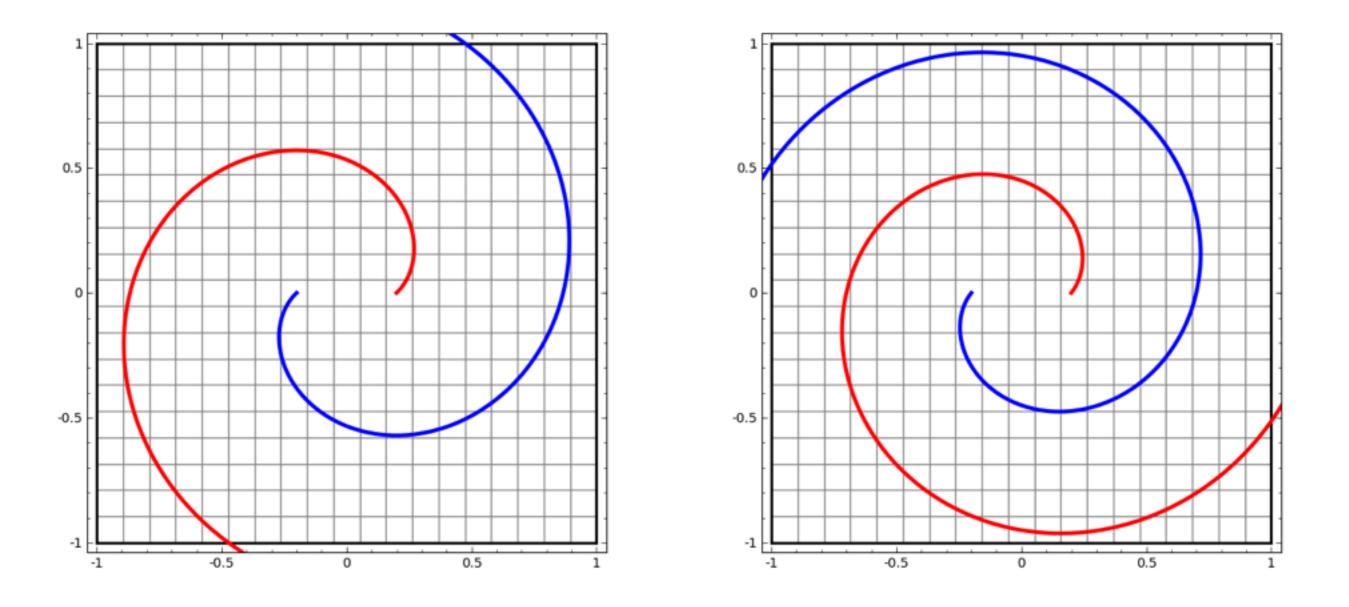
#### Non-linear SVM





#### Mapping in order to linearly separate clusters

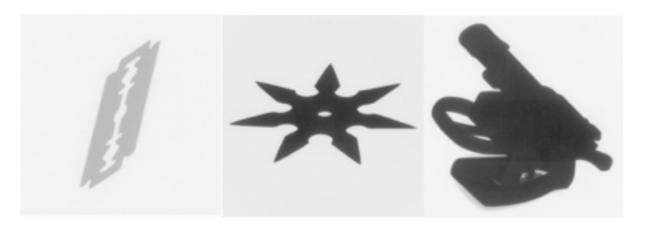
http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

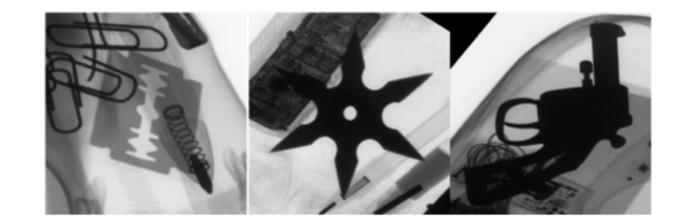


http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Easy

#### Difficult

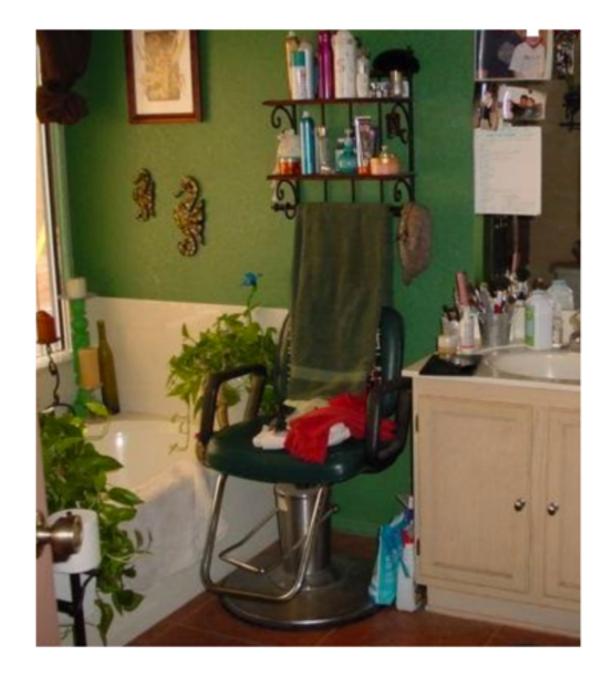




Easy

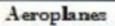
#### Difficult





#### Difficult







Buses



Dining tables



Potted plants







Cars



Dogs



Sheep



Cats

Horses

Sofas



Boats



Chairs



Motorbikes



Trains



Bottles



Cows



People



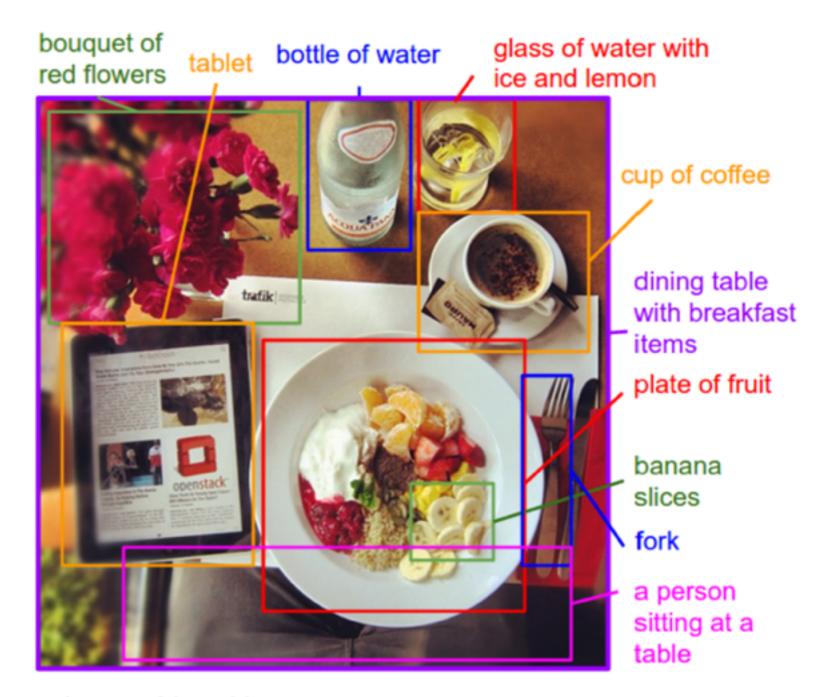
TV/Monitors

#### More Difficult



#### Laundry list for image archives

- Large sets
- Labelled data
- Metadata (CDEs!)
- Peripheral data
- Balanced datasets



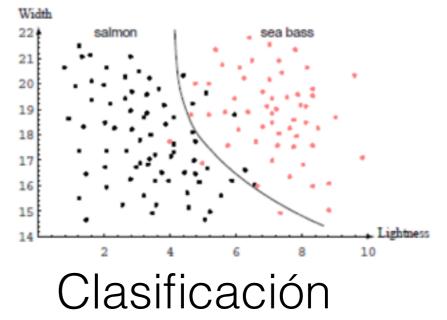
Example output of the model

#### Standard workflow



 $\rightarrow [x_1, x_2, \dots x_d]^T \rightarrow$ 

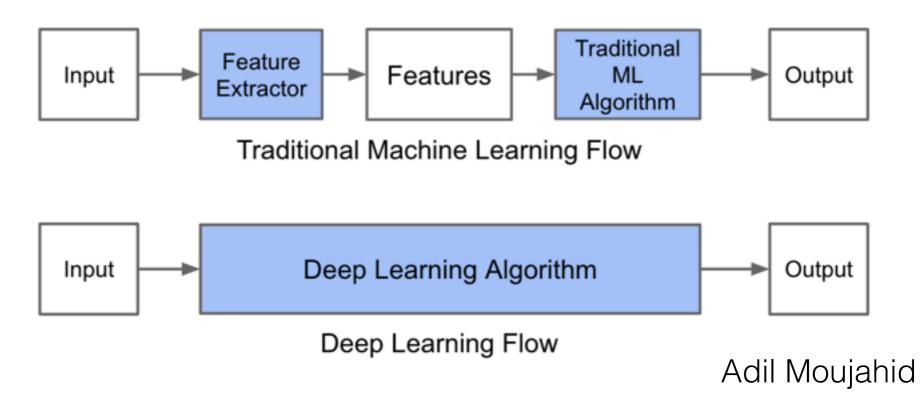
Características

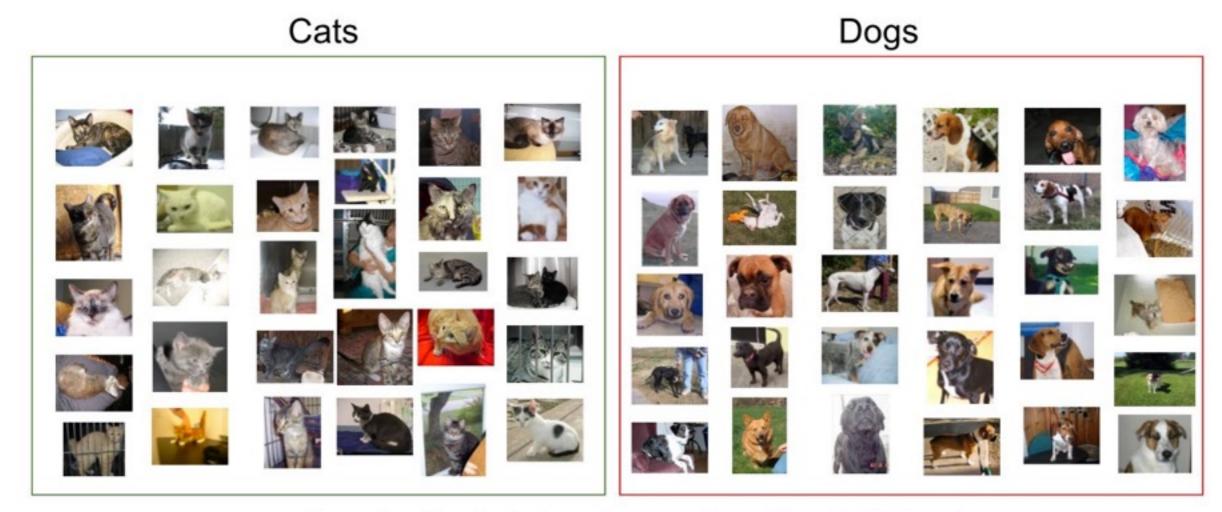


Datos

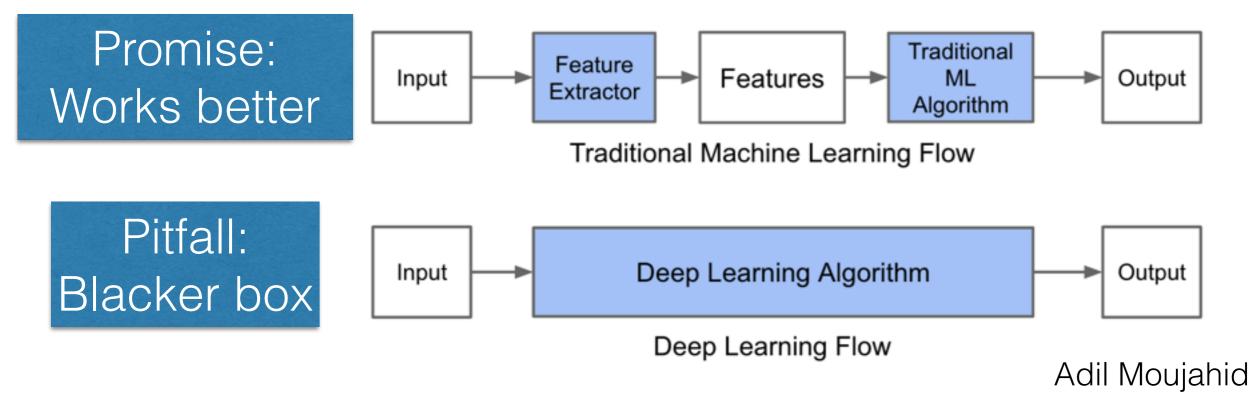


Sample of cats & dogs images from Kaggle Dataset

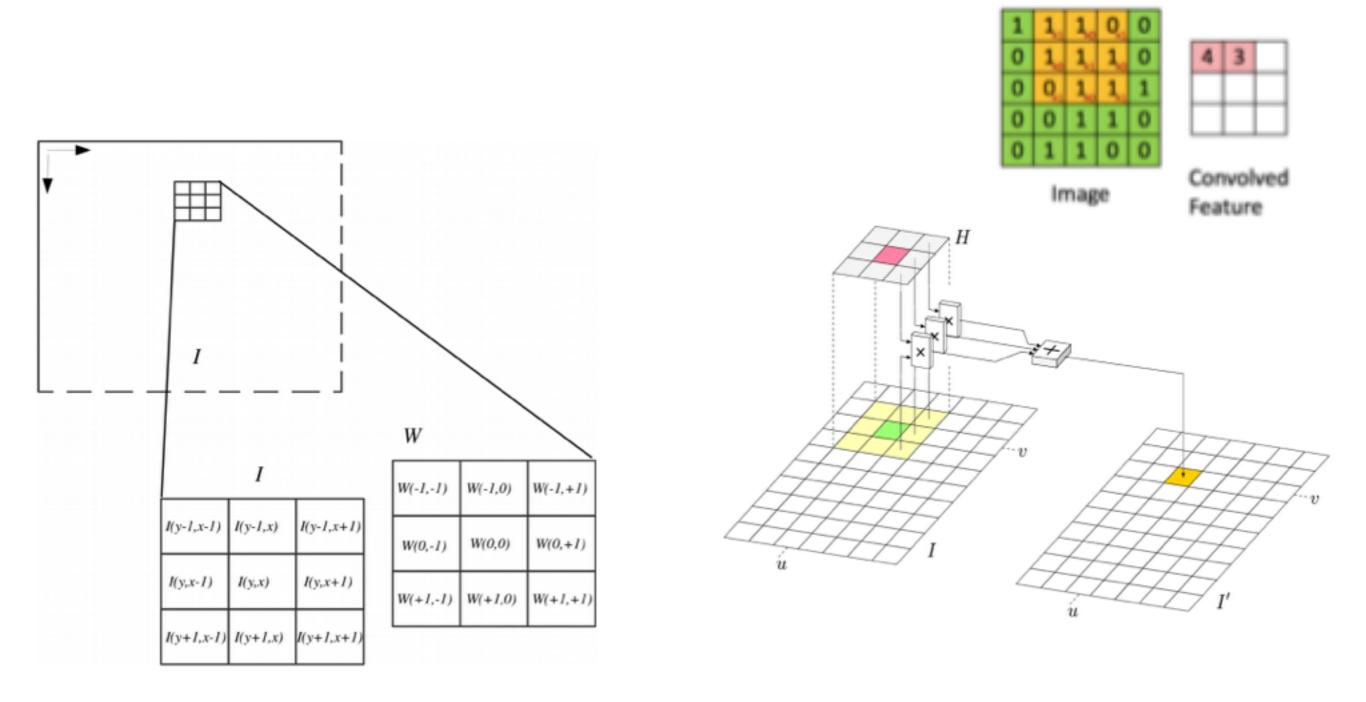




Sample of cats & dogs images from Kaggle Dataset

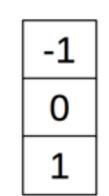


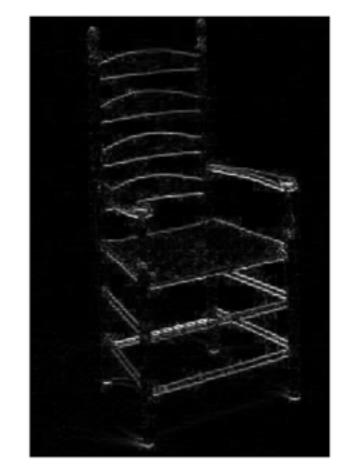
#### Convolution



#### Convolution filter

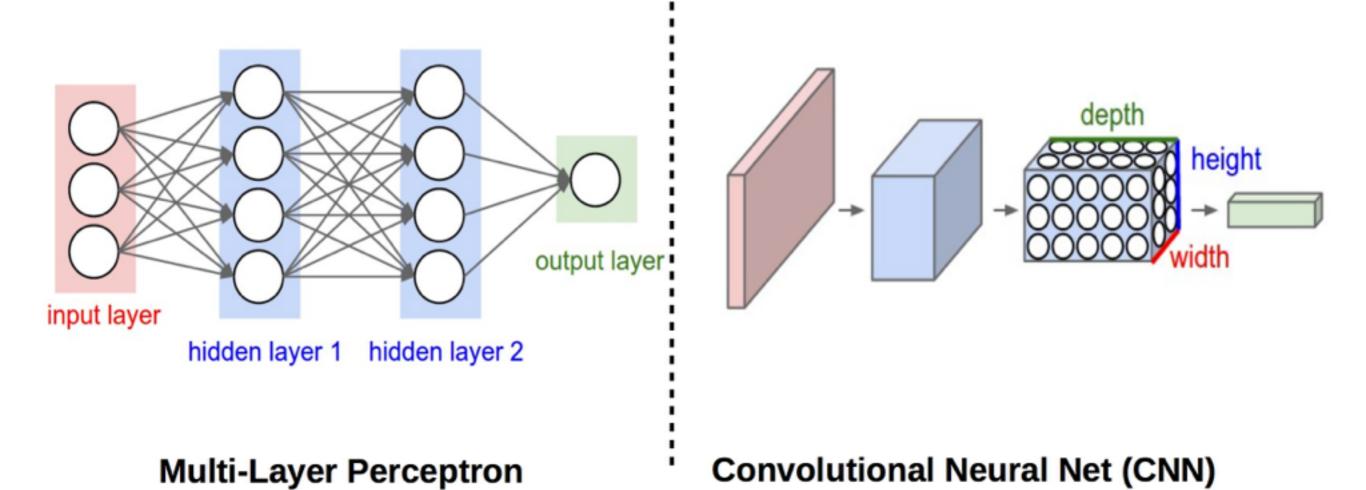


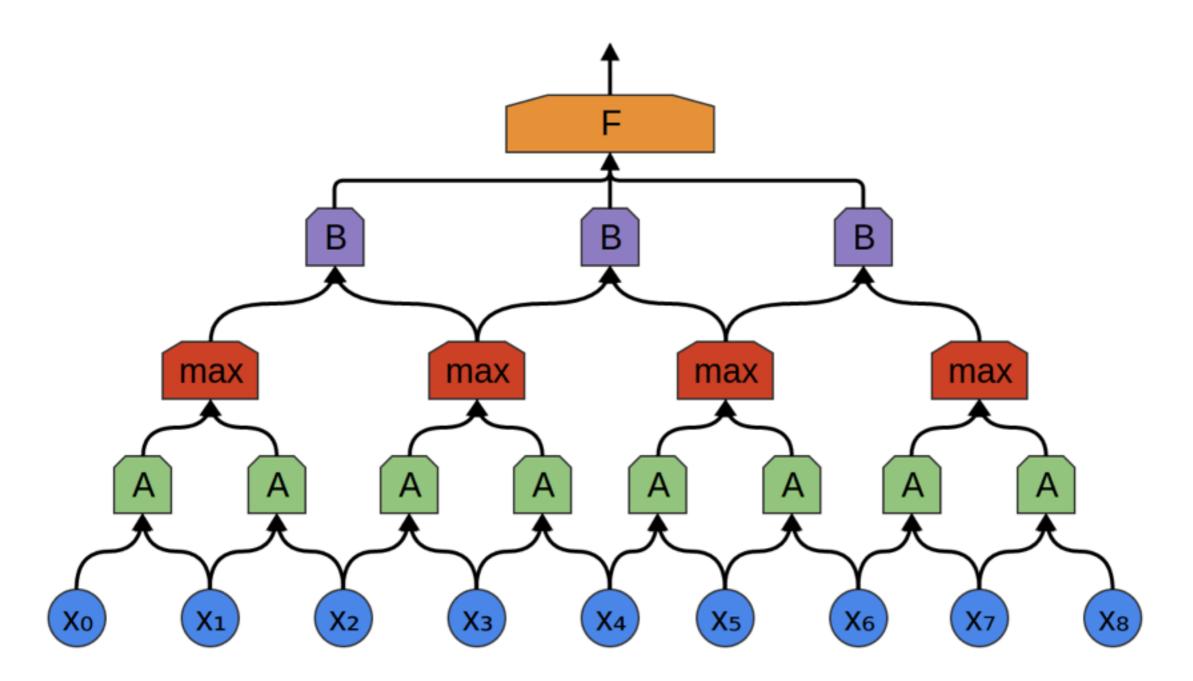




#### **CONVOLUTION AS FEATURE EXTRACTOR**

#### MLP & CNN





conv + pool + conv + connected

2D version of convolution

Ashish Mahabal

X1,0)

A

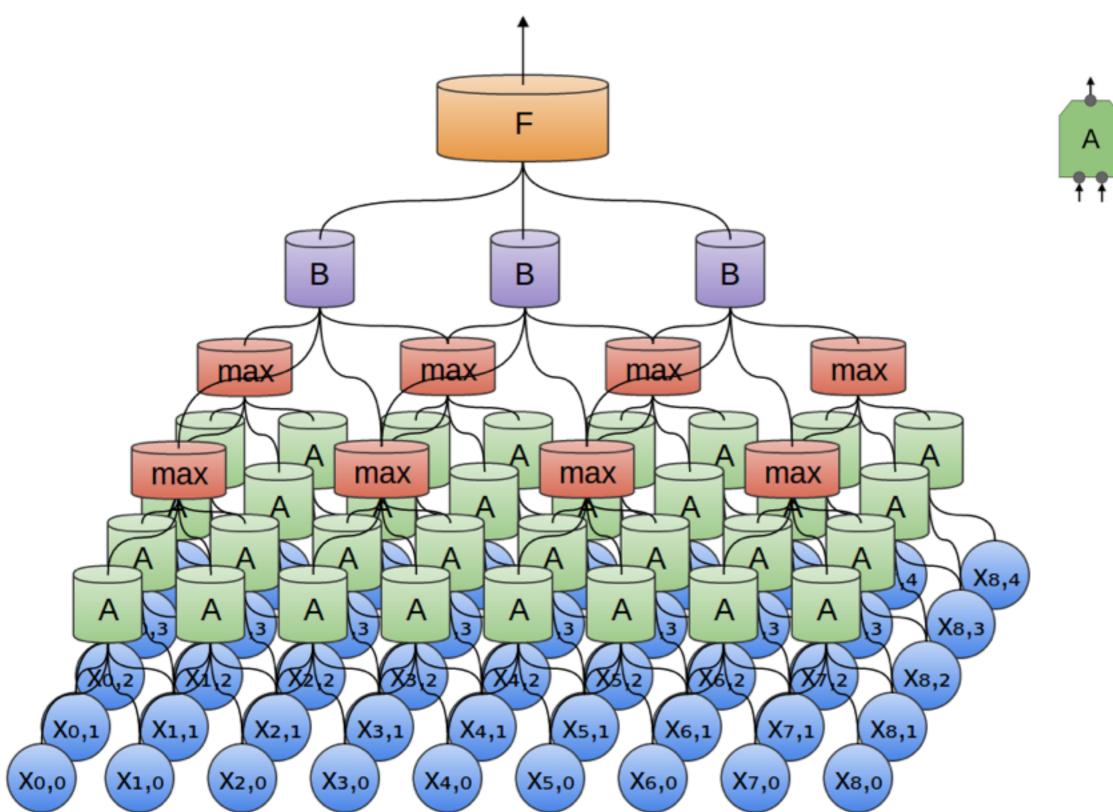
X0,1

X0,0

X1,1

28

http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

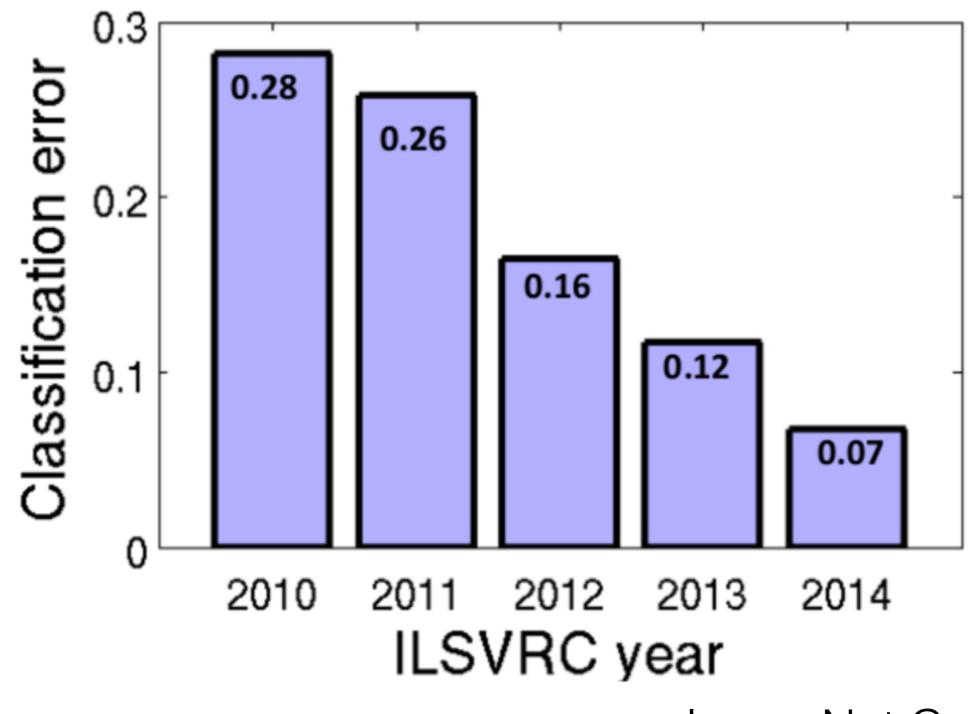




http://colah.github.io/posts/2014-07-Conv-Nets-Modular/

Final layers are fully connected Ashish Mahabal 29

#### Evolution of CNNs



ImageNet Competition

#### 2015 ILSVRC leaderboard

| Team name                        | Entry description                                                                      | Number of<br>object<br>categories<br>won | mean AP  |
|----------------------------------|----------------------------------------------------------------------------------------|------------------------------------------|----------|
| MSRA                             | An ensemble for detection.                                                             | 194                                      | 0.620741 |
| Qualcomm<br>Research             | NeoNet ensemble with bounding box regression. Validation mAP is 54.6                   | 4                                        | 0.535745 |
| CUImage                          | Combined multiple models with the region proposals of cascaded RPN, 57.3% mAP on Val2. | 2                                        | 0.527113 |
| The<br>University of<br>Adelaide | 9 models                                                                               | 0                                        | 0.514434 |
| MCG-ICT-                         | 2 models on 2 proposals without category information: {[SS+EB]+                        |                                          |          |

Classification error: 0.03567

Yellow: Winner in category Yellow/White: Reveal code Gray: Won't reveal code

#### 2016 ILSVRC leaderboard

| Team name               | Entry description                                                                 | Number of object<br>categories won | mean AP  |
|-------------------------|-----------------------------------------------------------------------------------|------------------------------------|----------|
| CUImage                 | Ensemble of 6 models using provided data                                          | 109                                | 0.662751 |
| Hikvision               | Ensemble A of 3 RPN and 6 FRCN models, mAP is 67 on<br>val2                       | 30                                 | 0.652704 |
| Hikvision               | Ensemble B of 3 RPN and 5 FRCN models, mean AP is 66.9, median AP is 69.3 on val2 | 18                                 | 0.652003 |
| NUIST                   | submission_1                                                                      | 15                                 | 0.608752 |
| NUIST                   | submission_2                                                                      | 9                                  | 0.607124 |
| Trimps-Soushe           | n Ensemble 2                                                                      | 8                                  | 0.61816  |
| 360+MCG-ICT-<br>CAS_DET | 9 models ensemble with validation and 2 iterations                                | 4                                  | 0.615561 |
| 360+MCG-ICT-<br>CAS_DET | Baseline: Faster R-CNN with Res200                                                | 4                                  | 0.590596 |
| Hikvision               | Best single model, mAP is 65.1 on val2                                            | 2                                  | 0.634003 |
| CIL                     | Ensemble of 2 Models                                                              | 1                                  | 0.553542 |
| 360+MCG-ICT-<br>CAS_DET | 9 models ensemble                                                                 | 0                                  | 0.613045 |
|                         |                                                                                   |                                    |          |

#### Classification error: 0.02991

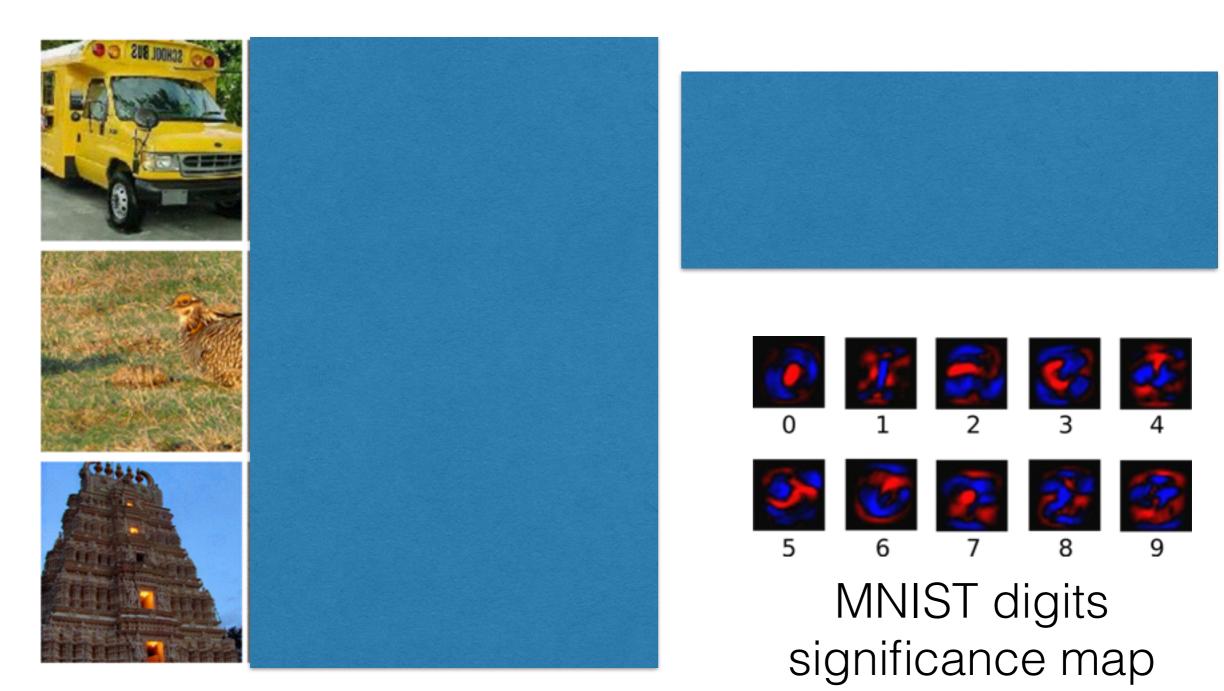
### What bird is that?



#### or: what features is my deep network using?

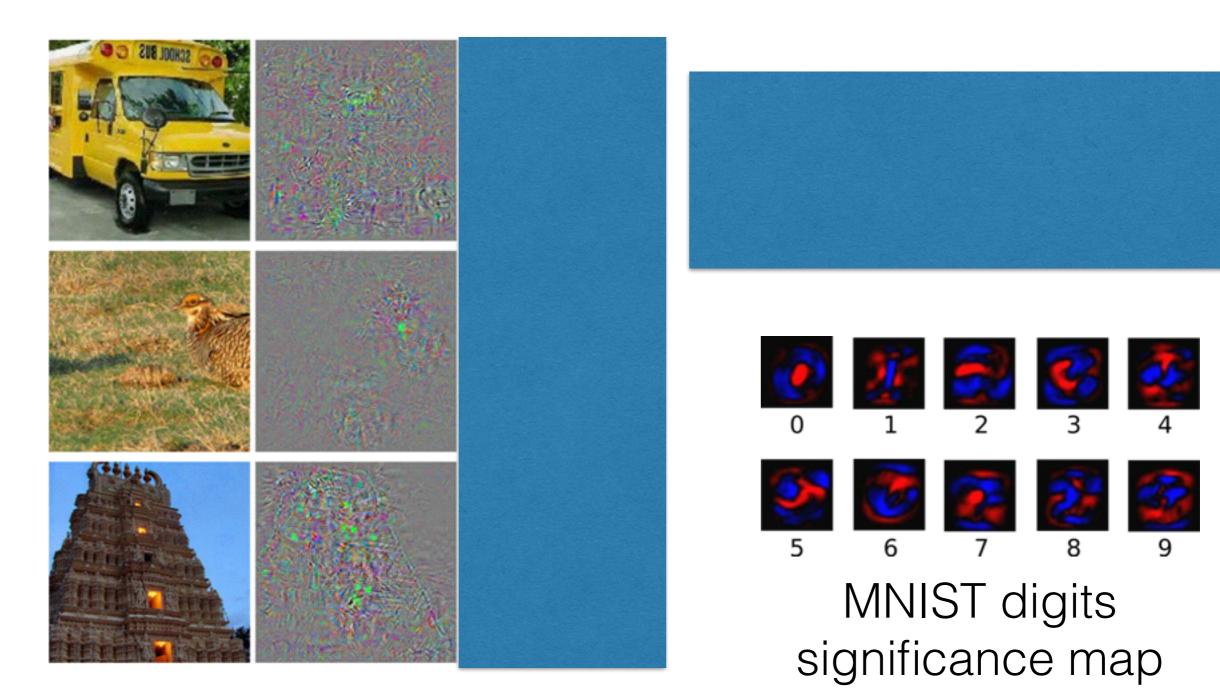
Ashish Mahabal

# Including adversarial examples during training



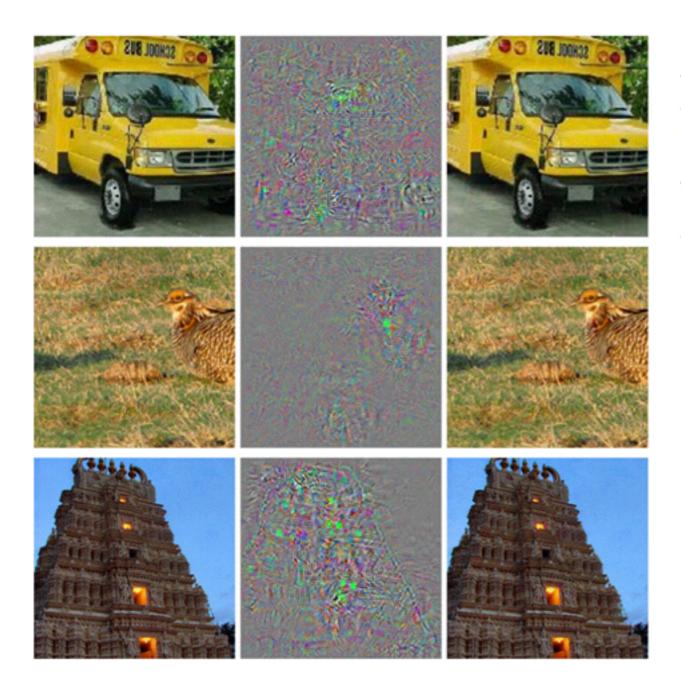
https://arxiv.org/pdf/1312.6199v4.pdf

# Including adversarial examples during training



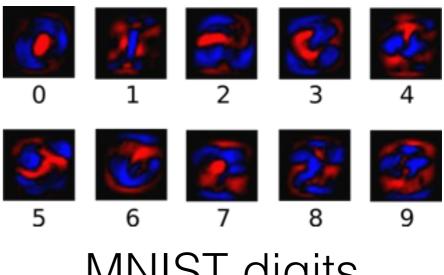
https://arxiv.org/pdf/1312.6199v4.pdf

# Including adversarial examples during training



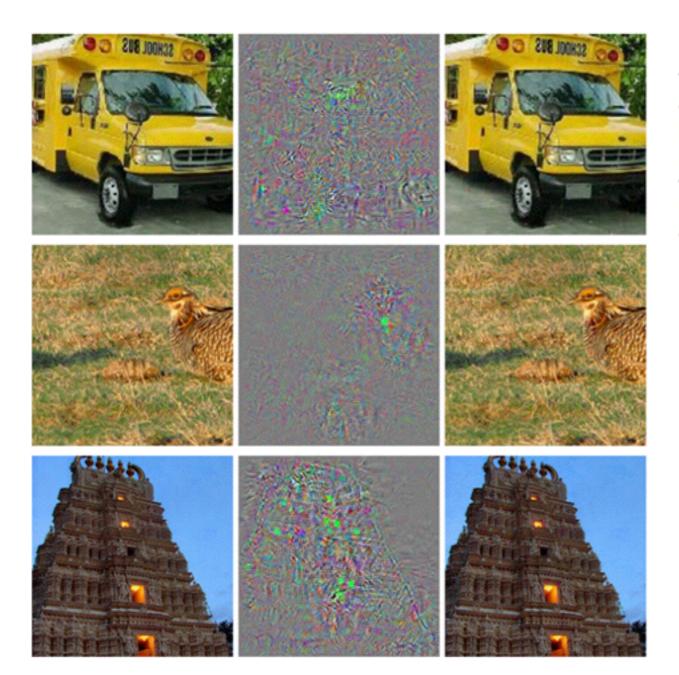
https://arxiv.org/pdf/1312.6199v4.pdf

The images in the left most column are correctly classified examples. The middle column represents the distortion between the left and right images. The images in the right most column are predicted to be of the class ostrich! Even though the difference between the images on the left and right is imperceptible to humans, the ConvNet makes drastic errors in classification.

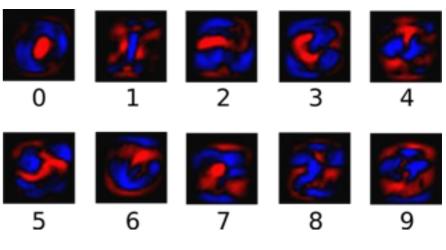


MNIST digits significance map

# Including adversarial examples during training



The images in the left most column are correctly classified examples. The middle column represents the distortion between the left and right images. The images in the right most column are predicted to be of the class ostrich! Even though the difference between the images on the left and right is imperceptible to humans, the ConvNet makes drastic errors in classification.

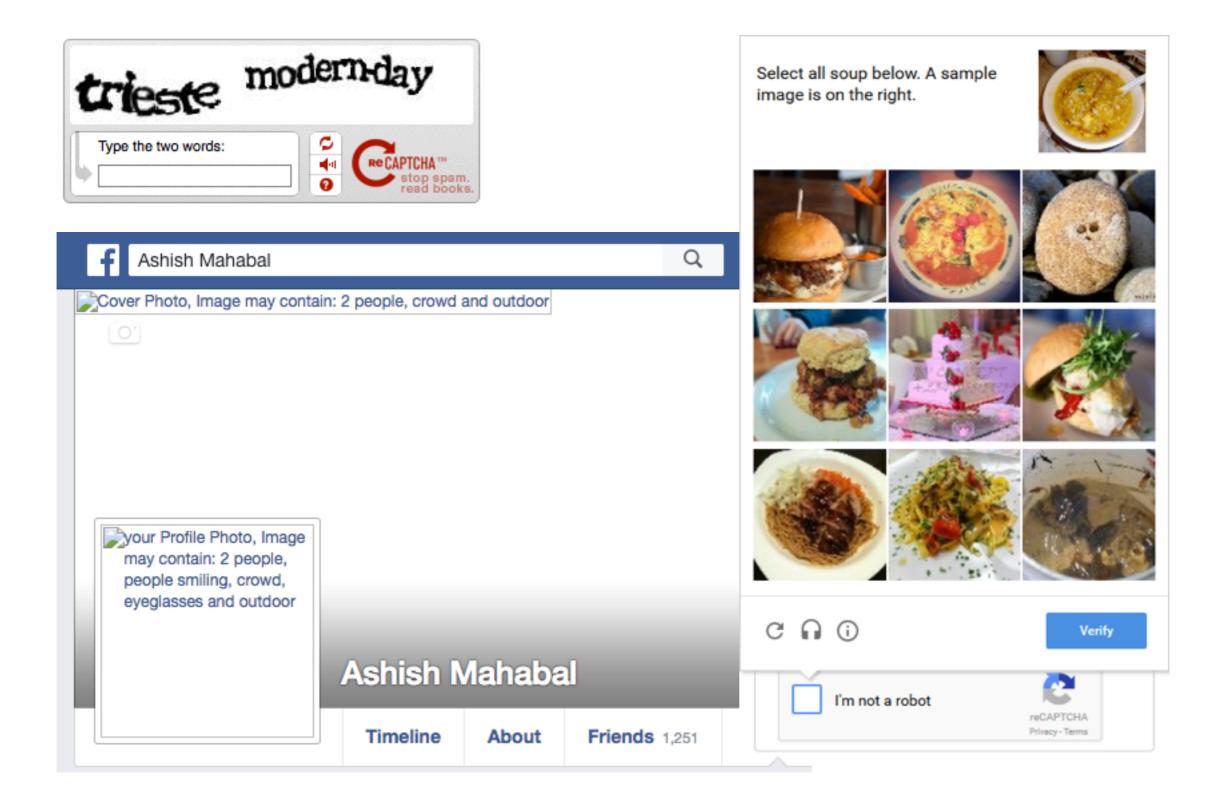


### MNIST digits significance map

https://arxiv.org/pdf/1312.6199v4.pdf

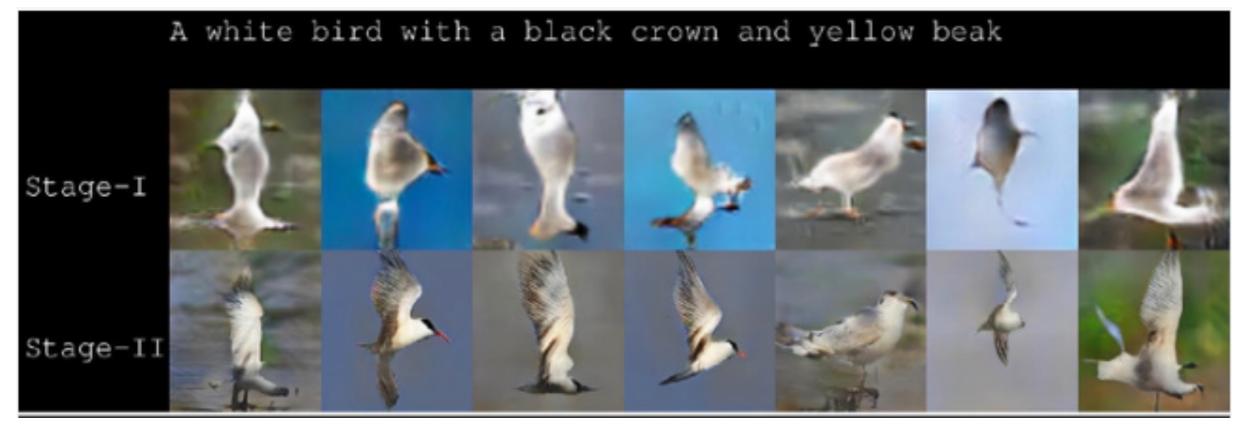
#### Pitfall: Overlearning

#### Labels are everywhere

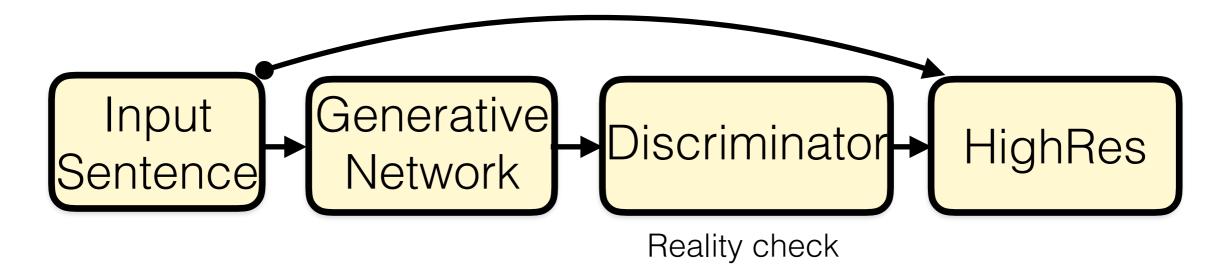


Ashish Mahabal

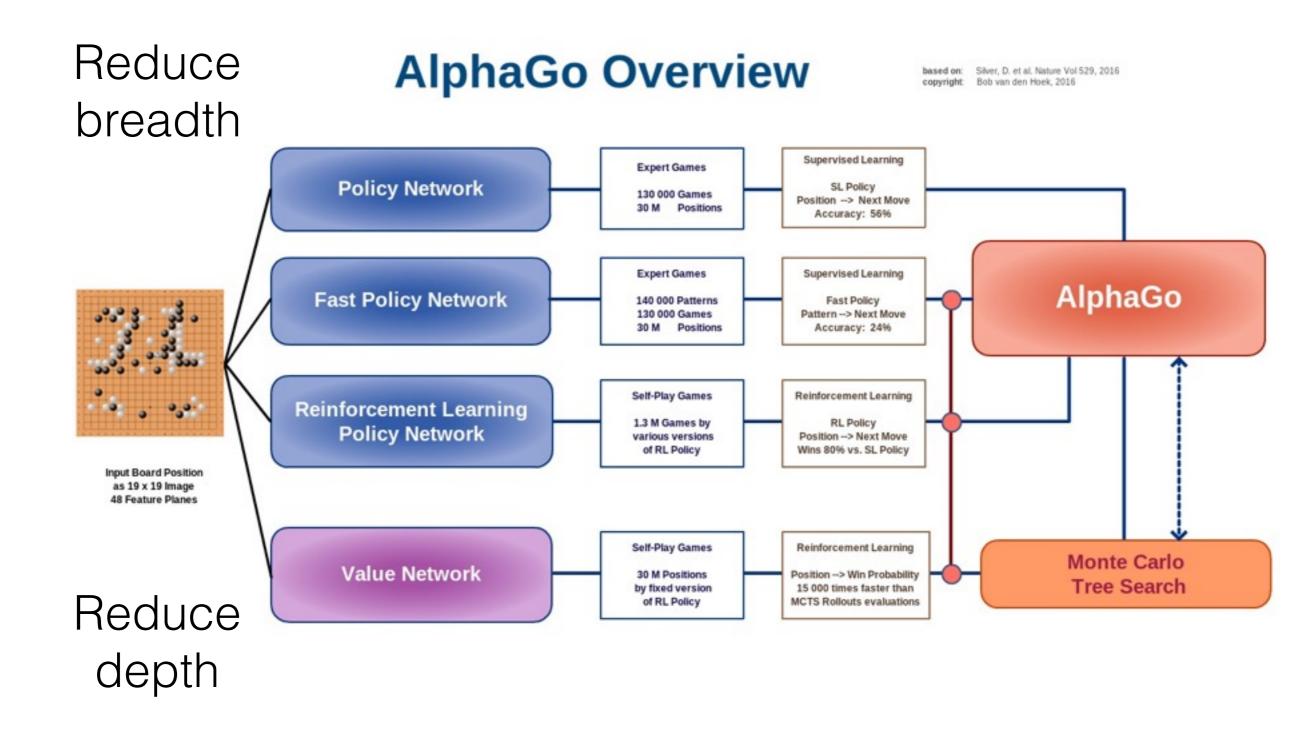
#### Generative Adversarial Networks



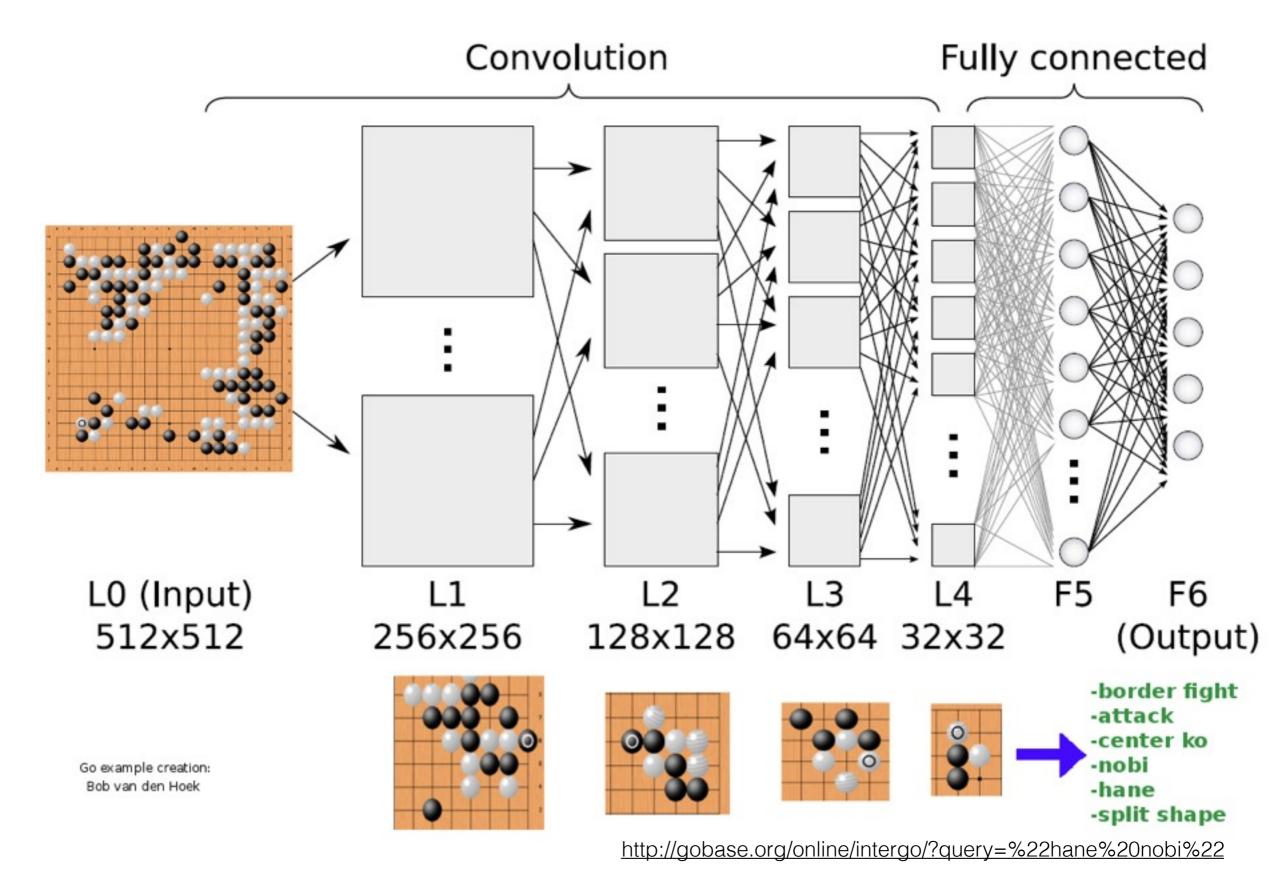
Zhang et al. 2016



Ashish Mahabal



http://deeplearningskysthelimit.blogspot.com/2016/04/part-2-alphago-under-magnifying-glass.html

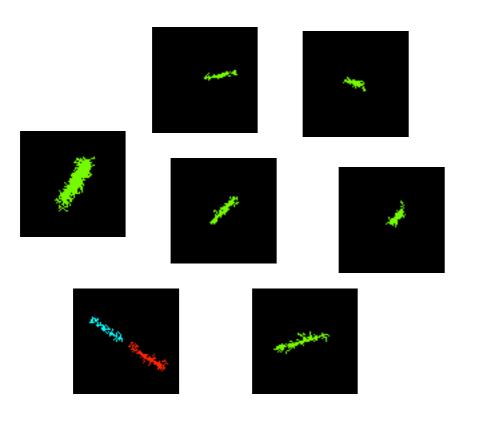


http://deeplearningskysthelimit.blogspot.com/2016/04/part-2-alphago-under-magnifying-glass.html

### Asteroid Detection from Sky Survey Imagery

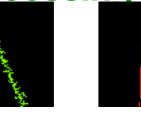
- Goal: automatically distinguish real vs. bogus asteroids from Palomar Transient Factory (PTF) imagery
- Current dataset: 240 confirmed asteroids, 1441 syntheticallygenerated asteroids, 20072 bogus

#### **Confirmed Asteroids**



#### **Bogus Detections**

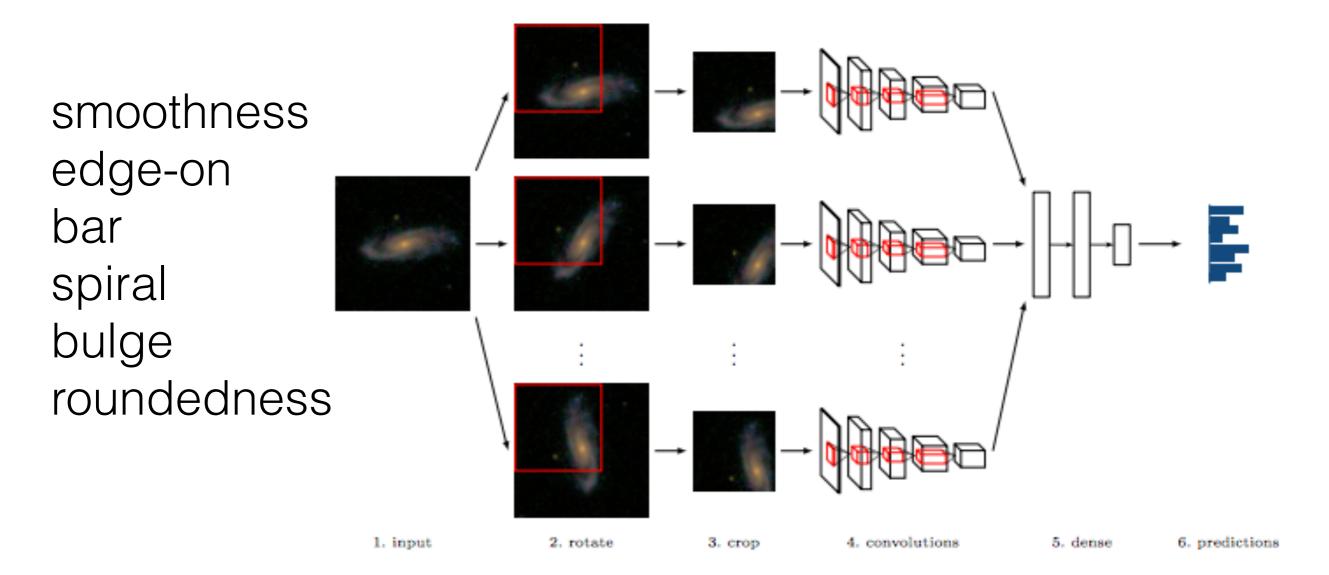
(cosmic rays, processing artifacts)





#### **Applications**

Dieleman, Willett & Dambre



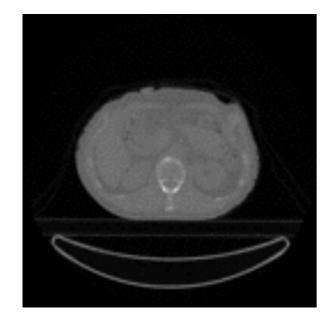
2015

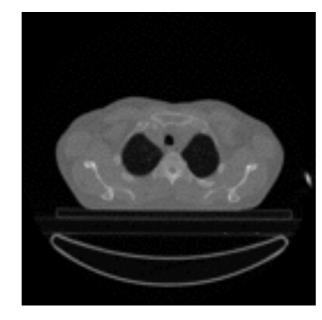
Galaxy images (Huertas-Company et al., 2015)

### Plans with Cancer datasets

Lung dataset: https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics DataType: non-small cell lung cancer (NSCLC) modalities: CT, RSTRUCT number of patients: 422 number of images: 51K pixel dimensions: 512x512







#### With and without cavity

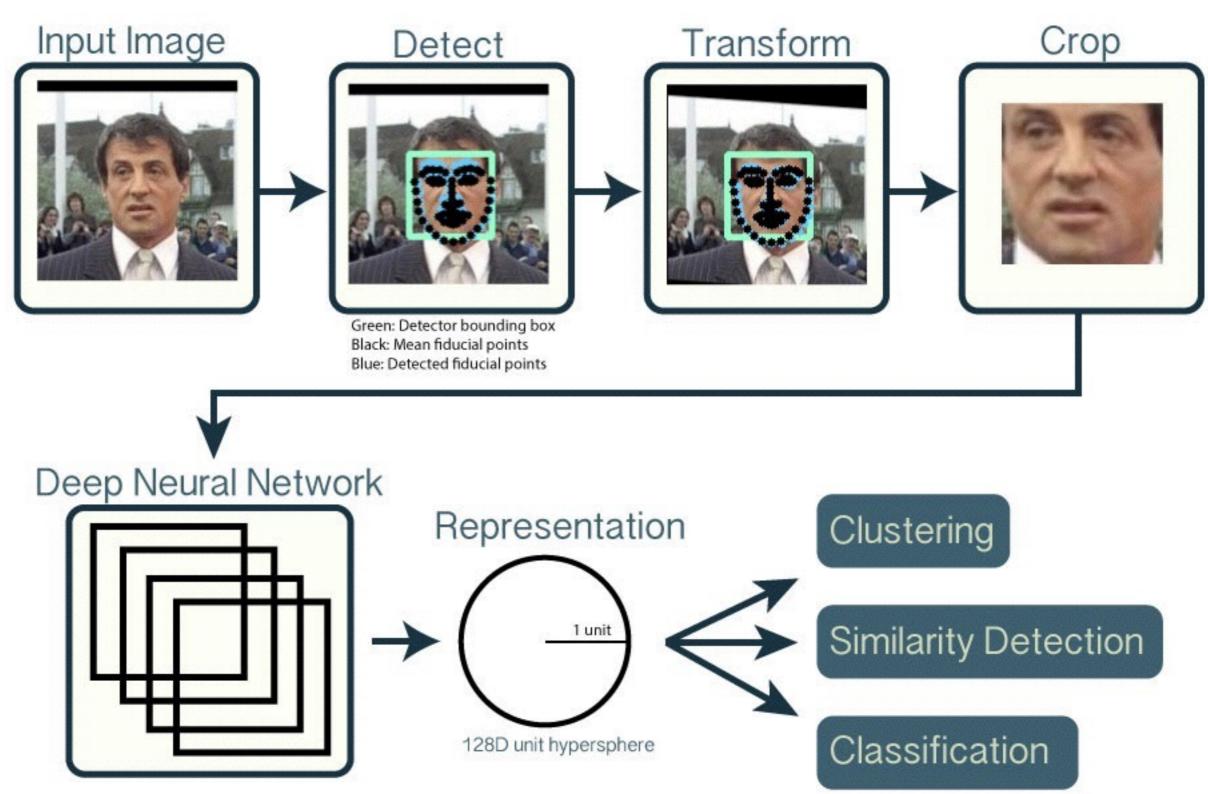
David Liu

|    | А         | В       | С                | D             | E                | F             | G          | Н      | I.          | J         | K       |
|----|-----------|---------|------------------|---------------|------------------|---------------|------------|--------|-------------|-----------|---------|
| 1  | PatientID | age     | clinical.T.Stage | Clinical.N.St | Clinical.M.Stage | Overall.Stage | Histology  | gender | Survival.ti | deadstatu | s.event |
| 2  | LUNG1-00  | 78.7515 | 2                | 3             | 0                | IIIb          | large cell | male   | 2165        | 1         |         |
| 3  | LUNG1-00  | 83.8001 | 2                | 0             | 0                | I             | squamous   | male   | 155         | 1         |         |
| 4  | LUNG1-00  | 68.1807 | 2                | 3             | 0                | IIIb          | large cell | male   | 256         | 1         |         |
| 5  | LUNG1-00  | 70.8802 | 2                | 1             | 0                | I             | squamous   | male   | 141         | 1         |         |
| 6  | LUNG1-00  | 80.4819 | 4                | 2             | 0                | IIIb          | squamous   | male   | 353         | 1         |         |
| 7  | LUNG1-00  | 73.8864 | 3                | 1             | 0                | Illa          | squamous   | male   | 173         | 1         |         |
| 8  | LUNG1-00  | 81.5288 | 2                | 2             | 0                | Illa          | squamous   | male   | 137         | 1         |         |
| 9  | LUNG1-00  | 71.666  | 2                | 2             | 0                | Illa          | adenocar   | male   | 77          | 1         |         |
| 10 | LUNG1-00  | 56.1342 | 2                | 2             | 0                | Illa          | squamous   | male   | 131         | 1         |         |
| 11 | LUNG1-01  | 71.0554 | 4                | 3             | 0                | IIIb          | squamous   | female | 2119        | 0         |         |
| 12 | LUNG1-01  | 64.3313 | 4                | 0             | 0                | IIIb          | squamous   | male   | 515         | 1         |         |
| 13 | LUNG1-01  | 71.2553 | 3                | 2             | 0                | Illa          | squamous   | male   | 85          | 1         |         |

#### Ashish Mahabal

#### Will use NLST

#### OpenFace



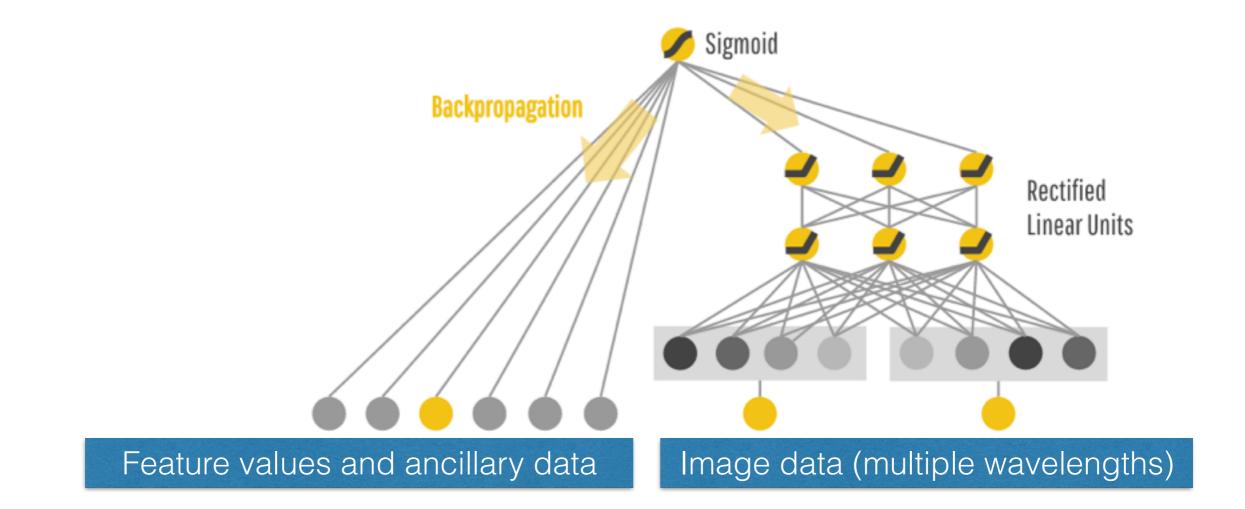
https://cmusatyalab.github.io/openface/



### in Streetview



### Combining with unstructured data



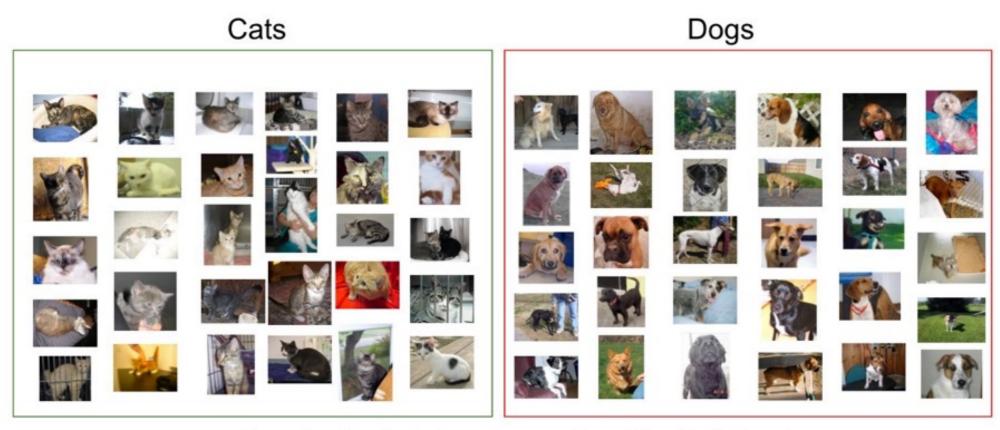
The "comments" or metadata become additional features (GoogLeNet)

https://research.googleblog.com/2016/06/wide-deep-learning-better-together-with.html

In <your area of interest> what can you apply deep learning to?

- One speculative example
- One more directly related to your work

### Demo ConvNet



Sample of cats & dogs images from Kaggle Dataset

#### **Useful links:**

https://prateekvjoshi.com/2016/01/05/how-to-install-caffe-on-ubuntu/

https://prateekvjoshi.com/2016/02/02/deep-learning-with-caffe-in-python-part-i-defining-a-layer/

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe/

## Demo ConvNet (kaggle)

- Designing layers [demo]
- Pre-processing :



Histogram Equalization ►



Image Resizing



Example of image transformations applied to one training image

• Convolutional network architecture (AlexNet):



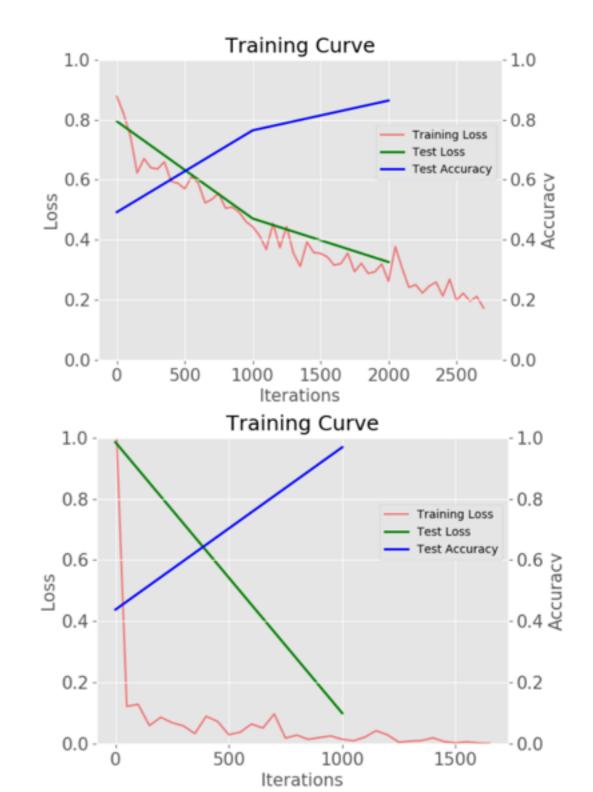
25.000 examples

# Demo ConvNet (kaggle)

• Training and test results (traditional, 2 days):

 Training and test results (transfer learning, 2 days):

**Model zoo:** https://github.com/BVLC/caffe/wiki/Model-Zoo



### Demo ConvNet

Online deep learning! [demo]

http://demo.caffe.berkeleyvision.org/

### Summary

- CNNs are taking over, especially the image domain
- Can come up with features not thought of before
- Abstracted libraries and visualizations available
- Over-learning can be a problem:
  - augmentation
  - adversarial examples/generative networks
- Should ensure they do not become convoluted

• Deep and wide networks may prove to be a boon