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A	matter	of	belief

l What	is	the	mean	height	of	people	in	the	room?
l What	are	the	confidence	intervals	on	this?
l What	does	this	mean?

Frequentist:
l The	range	in	which	the	mean	will	occur	95%	
of	the	time	with	repeated	sampling

Bayesian:
l The	interval	in	which	95%	of	the	population	
lies
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Bayes	Problem

“Let	us	then	imagine	a	person	present	at	the	drawing	of	a	lottery,	who	
knows	nothing	of	its	scheme	or	of	the	proportion	of	Blanks	to	Prizes	in	it.	Let	
it	further	be	supposed,	that	he	is	obliged	to	infer	this	from	the	number	of	
blanks	he	hears	drawn	compared	with	the	number	of	prizes;	and	that	it	is	
enquired	what	conclusions	in	these	circumstances	he	may	reasonably	make.

Let	him	first	hear	ten	blanks	drawn	and	one	prize,	and	let	it	be	enquired	
what	chance	he	will	have	for	being	right	if	he	guesses	that	the	proportion	of	
blanks	to	prizes	in	the	lottery	lies	somewhere	between	the	proportions	of	9	
to	1	and	11	to	1”

An	Essay	towards	solving	a	Problem	in	the	Doctrine	of	Chances
Rev.	T.	Bayes	(1763)
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Bayes	Problem

l Probability	of	wining,	p,	is	a	random	variable	in	[0,	1]
l The	result	of	each	draw,	Xi,	is	conditional	on	p:

𝑝 𝑋 = 1 = 𝑝	for	a	prize	and	𝑝 𝑋 = 0 = 1 − 𝑝	for	a	blank
l After	n+m draws,	there	will	be	m prizes	and	n blanks:

𝑓 𝑛,𝑚 =
𝑛+ 𝑚 !
𝑛! 𝑚! 𝑝; 1 − 𝑝 < =

𝑛 +𝑚
𝑚 𝑝; 1 − 𝑝 <

l The	chance	that	p lies	between	two	values	a and	b:

𝑃 𝑎 < 𝑝 < 𝑏 𝑚,𝑛 =
∫ 𝑛 + 𝑚

𝑚 𝑝; 1 − 𝑝 <𝑑𝑝C
D

∫ 𝑛 + 𝑚
𝑚 𝑝; 1 − 𝑝 <𝑑𝑝E

F

l For	a =	1/11,	b =	1/9,	m	=	1	and	n	=	10,	p	~	0.077

“there	would	therefore	be	an	odds	of	about	923	to	76,	or	nearly	12	
to	1	against his	being	right”
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Bayes	Theorem

l The	distribution	of	the	data,	n	and	m,	for	a	given	value	of	the	
unobserved	variable,	p,	is	the	likelihood	function:	p(D|M)

l The	initial	assumption	of	the	distribution	of	p is	the	prior,	p(M)
l The	denominator	is	the	marginal	likelihood or	evidence,	p(D)
l The	final	result	is	the	posterior	probability,	p(M|D):

𝑃 𝑀 𝐷 =
𝑃 𝐷 𝑀 𝑃(𝑀)

𝑃(𝐷)
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The	Monte	Hall	Problem

l You’re	on	a	game	show	and	are	presented	with	three	closed	doors
l Behind	one	is	a	fabulous	prize	but	behind	the	other	two	are	goats
l The	host	asks	you	to	pick	one	door	and	shows	you	that	behind	one	
of	the	others	is	a	goat	(it’s	always	a	goat)

l Do	you	want	to	stick	with	your	first	choice?

𝑝 𝑝𝑟𝑖𝑧𝑒	𝑏𝑒ℎ𝑖𝑛𝑑	𝐴 𝑔𝑜𝑎𝑡	𝑏𝑒ℎ𝑖𝑛𝑑	𝐵 =

𝑝(𝑔𝑜𝑎𝑡	𝑏𝑒ℎ𝑖𝑛𝑑	𝐵|𝑝𝑟𝑖𝑧𝑒	𝑏𝑒ℎ𝑖𝑛𝑑	𝐴) V 𝑝(𝑝𝑟𝑖𝑧𝑒	𝑏𝑒ℎ𝑖𝑛𝑑	𝐴)
𝑝(𝑔𝑜𝑎𝑡	𝑏𝑒ℎ𝑖𝑛𝑑	𝐵) =

1
2𝑥

1
3

1
2

=
1
3
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Choice	of	prior

l In	Bayes’	problem,	we	assumed	a	uniform	distribution	for	p:

𝑝 𝜃 = 𝑐𝑜𝑛𝑠𝑡. , 𝑎 < 𝜃 < 𝑏

l This	is	called	a	flat	prior	or	an	uninformative	prior
l Describes	a	state	of	knowledge	in	which	we	have	observed	at	least	
one	success	and	one	failure,	and	have	prior	knowledge	that	both	
states	are	physically	possible

l If	parameter	is	limited	to	positive	real	values	then	the	prior	should	
be	uniform	in	the	logarithmic	range:

𝑝 𝜃 ∝ 𝜃_E ⇒ 𝑝 ln𝜃 = 𝑐𝑜𝑛𝑠𝑡.
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Jeffrey’s	rule

l The	general	recommendation	for	an	uninformative	prior	is	the	
square	root	of	the	determinant	of	the	Fisher	information	for	the	
model: 𝑝(𝜃) ∝ det	ℐ(𝜃)where	ℐ(𝜃) is	the	second	moment	of	
the	partial	derivative	with	respect	to	𝝷 of	the	natural	logarithm	of	
the	likelihood	function:

ℐ 𝜃 = E
𝜕
𝜕𝜃 log 𝑓(𝜃)

g

= −E
𝜕g

𝜕𝜃g log𝑓(𝜃)

l For	a	Gaussian	with	an	unknown	mean:

𝑓 𝑥 𝜇 =
𝑒_(i_j)k/gmk

2𝜋𝜎g
and	so	the	prior	is:

𝑝 𝜇 ∝ E
𝑥 − 𝜇
𝜎g

g
= p 𝑓 𝑥 𝜇

𝑥 − 𝜇
𝜎g

g
𝑑𝑥

q

_q
=
1
𝜎
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Maximum	entropy

l We	want	a	measure	that	captures	the	information	contentof	a	
distribution	and	then	assign	a	prior	that	reflects	our	ignorance	of	
the	true	parameter	value	by	optimizing	this	quantity:

𝑆 𝑝E,𝑝g, … , 𝑝< = t𝑝u ln 𝑝u

<

uvE

	 (Shannon	entropy)

l The	maximum	entropy prior	maximizes:

𝑆 = −p𝑑𝑥	𝑝 𝑥 ln 𝑝(𝑥)

l So	if	we	know	the	variance	σ2	 is	finite	for	an	arbitrary	mean,	μ,	we	
can	use	Lagrange	multipliers	to	show	that:

𝑝 𝑥 =
1
2𝜋g

exp −
(𝑥 − 𝜇)g

2𝜎g

Amongst	all	real-valued	distributions	with	a	specified	variance,	the	
Gaussian	has	the	maximum	entropy
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Bayes	factor

l The	ratio	of	the	relative	likelihoods	of	the	data	under	each	model:

𝐾 =
𝑝(𝐷|𝑀E)
𝑝(𝐷|𝑀g)

=
∫ 𝑝 𝐷 𝜃E,𝑀E 𝑝 𝜃E 𝑀E 𝑑𝜃E
∫ 𝑝 𝐷 𝜃g,𝑀g 𝑝 𝜃g 𝑀g 𝑑𝜃g

l Posterior	odds	=	Bayes	factor	x	prior	odds

2 ln K K Strength of evidence
0 - 2 1 - 3 Not worth more than a bare mention
2 - 6 3 - 20 Positive
6 - 10 20 - 150 Strong
> 10 > 150 Very strong
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Evidence	for	ESP?

l A	study	of	whether	psychokinesis	could	influence	an	
electronic	random	number	generator	reported	52263471	
successes	out	of	104490000	Bernoulli	trials	
(ratio	=	0.50017768)

l In	the	absence	of	any	effect,	 ratio	=	0.5	so	p-value	=	0.0003	(3.6𝜎)
l Assume	𝜃E = 0.5 for	model	1	and	an	unknown	𝜃g for	model	2	with	
Jeffreys’	prior	for	Bernoulli,	𝑓 𝜃 = 1/ (𝜃 1 − 𝜃 ):

𝐾 =
𝑝(𝐷|𝜃E = 0.5)

∫ 𝑝(𝐷|𝜃g)𝑓(𝜃g)𝑑𝜃g
E
F

=
𝜋 V 0.5}

𝐵(𝑆 + 0.5, 𝑁 − 𝑆 + 0.5) = 𝑒g.�� = 18.7

So	there	is	positive	evidence	against	ESP.	For	a	uniform	prior,	K	~	15.4.
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Maximum	likelihood	estimation

l The	likelihood	of	a	data	set	given	a	particular	model	is	the	joint	
probability	of	each	individual	data	point	given	the	model:

𝐿 ≡ 𝑝 𝑥u 𝑀 𝜃 =�𝑝(𝑥u|𝑀 𝜃 )
<

uvE
l Although	it	is	often	useful	to	deal	with	the	log-likelihood:

𝐿 =�ln(𝑝 𝑥u 𝑀 𝜃 )
<

uvE
l For	the	best-fit	form	of	a	model	to	a	data	set,	the	likelihood	will	be	
optimized	in	terms	of	the	model	parameters:

𝜕𝐿
𝜕𝜃u

𝑥u, 𝜃�u = 0
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MLE	example

l Consider	a	power	law	(Pareto)	model	of	the	form:

𝑓 =
𝑎𝑥;�

𝑥��E	 for	𝑥 ≥ 𝑥;
l This	gives	a	log-likelihood	of:

ln 𝐿 = 𝑛 ln𝛼 + 𝑛𝛼 ln 𝑥; − (𝛼 + 1)t ln𝑥u

<

uvE
So

𝛼� =
1

∑ ln 𝑥u𝑛 − ln 𝑥;
<
uvE

l As	the	sample	size	increases,	the	distribution	of	the	MLE	tends	to	
a	Gaussian	distribution	with	mean	𝜃 and	covariance	matrix	equal	
to	the	inverse	of	the	Fisher	information	matrix,	𝓘(𝜃).	

l For	the	Pareto	model:		ℐ 𝛼 = 𝑛/𝛼g so	𝛼�~	𝐺(𝛼�, �
k

<
)
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Maximum	a	posteriori	(MAP)	estimation

l The	MLE	is	the	most	probable	Bayesian	estimator	assuming	a	flat	
prior.

l For	other	priors,	the	maximum	a	posteriori	estimate	is	better:
𝜃���� = argmax�𝐿 𝑥u 𝜃 𝑝(𝜃)

l Suppose	we	want	to	fit	a	Gaussian	model	to	a	data	set	and	we	
believe	the	mean,	𝜇,	is	drawn	from	a	different	Gaussian	
𝐺 𝜎F,𝜎;g :

l From	this	the	MAP	estimate	for	𝜇 is:

which	is	a	linear	interpolation	between	the	prior	mean	and	the	
sample	mean	weighted	by	their	respective	covariances
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Random	sampling

l In	1946,	Stan	Ulam was	playing	solitaire	and	decided	to	try	to	
compute	the	chances	that	a	particular	solitaire	laid	out	with	52	
cards	would	come	out	successfully.	After	attempting	exhaustive	
combinatorial	calculations,	he	decided	to	go	for	the	more	practical	
approach	of	laying	out	several	solitaires	at	random	and	then	
observing	and	counting	the	number	of	successful	plays.

l The	idea	of	selecting	a	statistical	sample	to	approximate	a	hard	
combinatorial	problem	is	at	the	heart	of	Monte	Carlo	simulations

l We	often	want	to	generate	a	random	sample	from	a	particular	
distribution	to	approximate	the	distribution	or	compute	an	
integral	involving	the	distribution.
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Estimating	multidimensional	integrals

l The	general	multidimensional	integration	problem	is	of	the	form:

𝐼 𝜃 = p𝑔 𝜃 𝑝 𝜃 𝑑𝜃

l This	can	be	computed	numerically	by	generic	Monte	Carlo	where	
a	random	set	of	M values	uniformly	sampled	from	within	the	
integration	value	𝑉� gives	an	estimate	of	the	integral:

𝐼 ≃
𝑉�
𝑀t𝑔 𝜃� 𝑝(𝜃�)

�

�vE
l It	would	be	much	better	if	we	could	guarantee	that	the	random	
set	of	values	we	use	is	(at	least)	asymptotically	proportional	to	
𝑝 𝜃 to	give:

𝐼 𝜃 =
1
𝑀t𝑔(𝜃�)

�

�_E
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Markov	Chain	Monte	Carlo

l Consider	a	sequence	of	random	variable	where	the	probability	of	
a	given	state	at	point	t+1 only	depends	on	the	state	at	point	t.	Let	
T be	a	matrix	of	the	transition	probabilities	between	states.	

l Now	we	want	the	sequence	to	reach	a	stationary	distribution	
proportional	to	some	𝑝 𝜃 and	so	the	probability	of	arriving	at	
point	t+1must	be	proportional	to	𝑝 𝜃��E :

𝑝 𝜃��E = t𝑇(
�

𝜃��E,𝑦)𝑝(𝑦)

𝑝 𝜃��E|𝜃� = 𝑝 𝜃�|𝜃��E
l The	most	popular	MCMC	algorithm	is	Metropolis-Hastings	and	
this	adopts:

𝑇 𝜃��E 𝜃� = 𝑝D�� 𝜃��E, 𝜃� 𝜃��E 𝜃�

𝑝D�� 𝜃�, 𝜃� =
𝑄 𝜃�, 𝜃� 𝑝(𝜃�)	
𝑄 𝜃� 𝜃� 𝑝(𝜃�)


