
Best Programming Practices

Ashish Mahabal, CD3, Caltech

LSSDS

2018-08-27

Code Divides the Universe

"Schrodingers cat" by Dhatfield – SA 3.0
(Wikimedia)

Treat your coding accordingly

1 Ashish Mahabal

Vision of a program

•  Variables
–  their names

•  Subroutines
–  their names
–  their functions

•  Structure of a program
•  Evolution and well being

2 Ashish Mahabal

Only small variations based on tools

The Pragmatic Programmer
By Andrew Hunt and David
Thomas

When in doubt:
import this

for Python:

4 Ashish Mahabal

Source Code Control

Allow versions to be stored in one place
Allow multiple people to work on a piece of

code
Allow access from multiple computers easily

[Concurrent Version Systems (CVS)]
Apache SubVersion (SVN)
Git
[Mercurial]

5 Ashish Mahabal

Git
git init
git clone repo

7 Ashish Mahabal

Online “hubs” that allow versioning

•  github
•  bitbucket
•  google drive
•  authorea – collaborative papers
•  overleaf – collaborative latexing

8 Ashish Mahabal

Coding by instinct

•  Variable names
– UpperCamelCase,
–  lowerCamelCase,
– alllowercase (bad!)
– period.separated (issues with modules)
– underscore_separated (possible issues with

latex)

9 Ashish Mahabal

Coding by instinct (loops)

•  Types of loops (for, while, …)
for <variable> in <sequence>:
 <statements>
else:
 <statements>

for k in {"x": 1, "y": 2}:
 print k

Even avoiding explicit loops …

10 Ashish Mahabal

Sum numbers between 1 and 100
that are divisible by 3 or 5

but not both

11 Ashish Mahabal

Coding by instinct

•  Variable names
•  Types of loops (for, while, …)
•  Formatting

–  Indents, brackets, braces, semicolons

•  Procedural versus object oriented
approach

Conscious and consistent programming style

12 Ashish Mahabal

Zen of Python (PEP 20 – Aug 2004)
1.  Beautiful is better than ugly.
2. Explicit is better than implicit.
3.  Simple is better than complex.
4.  Complex is better than complicated.
5.  Flat is better than nested.
6.  Sparse is better than dense.
7. Readability counts.
8.  Special cases aren't special enough to break the rules.
9.  Although practicality beats purity.
10. Errors should never pass silently.
11. Unless explicitly silenced.
12. In the face of ambiguity, refuse the temptation to guess.
13. There should be one— and preferably only one —obvious way to do it.
14. Although that way may not be obvious at first unless you're Dutch.
15. Now is better than never.
16. Although never is often better than right now.
17. If the implementation is hard to explain, it's a bad idea.
18. If the implementation is easy to explain, it may be a good idea.
19. Namespaces are one honking great idea — let's do

more of those!

(a poem by Tim Peters) Available as “import this”
Ashish Mahabal 13

 Modification cycle

Write test
Run and make sure it fails
Checkout
Change, comment, edit readme etc.
Compile
Run: make sure test passes
Checkin

13 Ashish Mahabal

A simple test

14 Ashish Mahabal

Before the project

Dig for requirements
Document requirements
Make use case diagrams
Maintain a glossary
Document, Document, …

1 Ashish Mahabal

Easy development versus easy
maintenance
–  projects live much longer than intended
–  adopt more complex and readable language

Check requirements
Design, implement, integrate
Validate

2 Ashish Mahabal

Validation

•  Don’t trust the work of others
– Validate data (numbers, chars etc.)
– Put constraints (-90 <= dec <= 90)
– Check consistency

3 Ashish Mahabal

Validation

•  Don’t trust the work of others
– Validate data
– Put constraints
– Check consistency

•  Don’t trust yourself
– Do all the above to your code too

4 Ashish Mahabal

When something goes wrong
•  Crash early

– Sqrt of negative numbers (require, ensure, NaN)
•  Crash, don’t trash

– Die
– Croak (blaming the caller)
– Confess (more details)
– Try/catch (own error handlers e.g. HTML 404)

•  Exceptions – when to raise them
–  should it have existed?
– Don’t know?

5 Ashish Mahabal

6 Ashish Mahabal

•  Don’t optimize code – benchmark it
•  Don’t optimize data structures – measure

them
•  Cache data when you can – use Memoize
•  Benchmark caching strategies
•  Don’t optimize applications – profile them

 (find where they spend most time)

7 Ashish Mahabal
gridgain.blogspot.com

factorial of k

8 Ashish Mahabal

Profiling

9 Ashish Mahabal

Benchmarking

Benchmarking game:
 http://shootout.alioth.debian.org/

Benchmarking python:

 http://ziade.org/2007/10/18/unobtrusive-benchmark-and-
debug-of-python-applications/

10 Ashish Mahabal

blog.insresearch.com

Necessary ingredients

•  Robustness
•  Efficiency
•  Maintainability

11 Ashish Mahabal

Robustness

•  Introducing (tests for) errors
– checking for existence (uniform style)

•  Edge cases
– 0? 1? last?

•  Error handling
– exceptions? Verifying terminal input

•  Reporting failure
– Traces? Errors don’t get quietly ignored

12 Ashish Mahabal

Checking for overloaded cases

13 Ashish Mahabal

Efficiency

•  Working with strength
•  Proper data structures
•  Avoiding weaknesses
•  Dealing with version changes (backward

compatibility) [python 2.X and 3.X!]

14 Ashish Mahabal

Maintainability

•  More time than writing
•  You don’t understand your own code

– Comment amply

•  You yourself will maintain it
•  Consistent practices

– Braces, brackets, spaces
– Line lengths, tabs, blank lines

15 Ashish Mahabal

•  (non)Duplication
•  Orthogonality
•  Refactoring

1 Ashish Mahabal

Duplication
•  Don't repeat yourself
•  Impatience
•  Reinventing wheels

Visit the Python cheese-shop

Also visit the Hitch Hikers Guide to
Python

Don’t forget the cheat-sheets

2 Ashish Mahabal

Orthogonality
•  Decouple routines
•  Make them independent
•  Change in one should not affect the other
•  Changes are localized
•  Unit testing is easy
•  Reuse is easy
•  If requirements change for one function, how

many modules should be affected? 1
•  Configurable

3 Ashish Mahabal

def line(startpoint, endpoint, length):
 some code here
 …

def line2(startpoint, endpoint):
 length = endpoint – startpoint

 some code here
 …

4 Ashish Mahabal

•  if while entertaining libraries you need to
write/handle special code, it is not good.

•  avoid global data
•  avoid similar functions
•  even if you are coding for a particular

flavor of a particular OS, be flexible

5 Ashish Mahabal

Refactoring

•  Early and often
– Duplication
– Non-orthogonal design
– Outdated knowledge
– Performance

•  Don’t add functionality at the same time
•  Good tests
•  Short deliberate steps

6 Ashish Mahabal

Design by contract (Eiffel, Meyer ’97)

•  Preconditions
•  Postconditions
•  Class invariants

 Be strict in what you accept
 Promise as little as possible
 Be lazy

Inheritance and polymorphism result

7 Ashish Mahabal

Other aspects

•  Tests
•  Comments
•  Arguments
•  Debugging

8 Ashish Mahabal

Tests: All software will be tested
 If not by you, by other users!

•  Test against contract

– Sqrt: negative, zero, string
– Testvalue(0,0)
– Testvalue(4,2)
– Testvalue(-4,0)
– Testvalue(1.e12,1000000)

•  Test harness
– Standardize logs and errors

•  Test templates
•  Write tests that fail

http://ib.ptb.de/8/85/851/sps/swq/graphix

9 Ashish Mahabal

things to keep in mind

•  long sub names
–  test_square_of_number_2()
–  test_square_negative_number()

•  standalone code
•  standalone datasets
•  Cleaning

– setUp()
–  tearDown()

10 Ashish Mahabal

Python testing

•  unittest – unit tests
•  doctest – within your docstrings
•  pytest – simpler mechanism
•  nose
•  tox
•  mock

http://python-guide.readthedocs.org/en/latest/writing/tests/
11 Ashish Mahabal

Comments
•  If it was difficult to write, it must be difficult

to understand (??)
•  bad code requires more comments
•  tying documentation and code

12 Ashish Mahabal

Documentation/comments in code

•  List of functions exported
•  Revision history
•  List of other files used
•  Name of the file

13 Ashish Mahabal

Documentation

•  Algorithmic:
full line comments to explain the algorithm
•  Elucidating: # end of line comments
•  Defensive: # Has puzzled me before. Do

this.
•  Indicative: # This should rather be

rewritten
•  Discursive: # Details in POD

14 Ashish Mahabal

Arguments and return values

•  Don’t let your subroutines have too many
arguments
– universe(G,e,h,c,phi,nu)

•  Look for missing arguments
•  Set default argument values (*args,

**kwargs)

•  Use explicit return values (rather than just
side-effects)

notebook: arguments
15 Ashish Mahabal

Arguments

16 Ashish Mahabal

Debugging

•  There will be bugs!
•  The only bug-free program is one that

does not do anything
•  Tests: write unit tests first
•  Make sure the program ‘compiles’ without

warnings

17 Ashish Mahabal

•  make bugs reproducible (with a single
command)

•  visualize the data
•  Breakpoints

http://www.gnu.org/software/ddd/
plots.png

18 Ashish Mahabal

When you find a bug …

•  Check boundary conditions
–  first and last elements of lists

•  Describe the problem to someone else
•  Why wasn't it caught before
•  Could it be lurking elsewhere

(orthogonality!)
•  If tests ran fine, are the tests bad?

19 Ashish Mahabal

Metaprogramming

•  Configure
•  Abstraction in code, details in metadata

– Decode design
– docstrings

1 Ashish Mahabal

Portfolio building
•  learn general tools, invest in different ones

–  plain text
•  easier to test (config files, for instance)

–  Shells
•  find, sed, awk, grep, locate
•  .tcshrc, .Xdefaults

–  learn different (types of) languages
–  Editor

•  if you know emacs, learn just a little bit of vi (or sublime)
•  Configurable, extensible, programmable (cheat sheet)

–  syntax highlighting
–  auto completion
–  auto indentation
–  Boilerplates
–  built-in help

Text manipulation
perl and ruby are very powerful

2 Ashish Mahabal

•  Code generators
– make files, config files, shell scripts., …

•  Active code generator:
– Skyalert (transient astronomy streams)

•  new transient
•  obtain distributed archival data
•  incorporate it
•  if certain conditions met,

–  run other programs
–  or raise alerts
–  drive other telescopes
–  and obtain feedback

3 Ashish Mahabal

•  Languages/tools/OSes/editors
– 99 bottles of beer
– Programming shootout
– Project Euler

•  Python
•  Perl
•  J
•  Haskell

4 Ashish Mahabal

Exercise

•  Write a program to count number of ways
to split an amount using coins of
denominations 1,5,10,25

•  For numbers 1 through 100, sum those for
which the answer to the first question is an
odd number

•  Is it odd or even?

6 Ashish Mahabal

Exercise
•  Duplicate as much as possible the

following using only Unix commands:

http://lifehacker.com/5898720/a-better-
strategy-for-hangman

7 Ashish Mahabal

What are the lessons?

•  Chain as weak as its weakest link
•  Comment! For others and for yourself
•  Tests!
•  Orthogonality
•  Don’t duplicate
•  Designing by contract
•  Know the features

8 Ashish Mahabal

Law 1: Every program can be optimized to
be smaller.

Law 2: There's always one more bug.
Corollary: Every program can be reduced to

a one-line bug.

9 Ashish Mahabal

Follow the Best Practices, and have fun coding

