Mathematical
Modeling

HPC 123

Scientific Computing on HPC systems
Module 1/2
By

Juan Carlos Maureira B.
<jcm@dim.uchile.cl>

La Serena Data Science School - 20/08/2019

mailto:jcm@dim.uchile.cl

Overview

e Concepts & Definitions.
* Working with a HPC system.

* Programming in a HPC system.

- Bash
- Python

* Wrapping up: The take aways.

Scientific Computing

e Simulations

.I._ /7 Ir J

/ L/ =3
CASE 1 Bom T
EARLY DATA ANALYSIS |

£m :
UNRESEONSE. SORES e WHERE'S THE BEEF?
VoA _

* Data Analysis

 Computational p—— — oo e

SOL-UTTON: PROGRAMMING
ALGORITHMS: o(r)

Optlmlzathn O (n!) O (n22")
ES%L‘J%FWE?

T~
SHUT THE
HELW LUF

Concepts & Definitions

HPC system Architecture

AA AR

login Nodes

M

[fu

Dev and testing Cluster

Storage Area Support Area
° AreaS HPC Hesystem Users Hesystem _
] -
Compuing,) O] |
Storage, e
Support, ~a— =
Networklng 0551 0552 0553 0554 NB-1 NB-?
* Servers roles

Inteconnectin
- Compute, frontend, login, MNetwerk g
storage, backup, devel
monitoring, etc.

e Software

— Operating System, scientific
software, analysis tools,
libraries, etc.

* Storage
- Local, working shared, scratch, fast,
- slow

Compute Area

i EEEER

Distributed Memory Machines

N . g
(T R T R 1T
111
GPU J MIC shaed Memaory
Machines Machines

Service
x Network

Distributed and Shared Memory
Systems

OCo—C

(O—O

Shaed Memory Distributed Memory

BO—On

BEO—COl

Distributed Shaed Memory

Interconnects

* Ethernet

- latency ~ 0.05 ms

- Throughput ~ 10 Gbps
* Infiniband

- latency ~5 usec

— Throughput ~ 40/56 Gbps
« QPl/ NUMA

- Latency ~ 100 nsec
— Throughput ~ 100 - 200 Gbps

File-systems Types

Clients Cllents

ey il = Wi =5 e = == e Serial
Interconec tion - NFS, ZFS

[0 saaO];
ﬂ Storage
|== = enver

* Distributed
storage) oo - PNFS

a | - GFS

- Gluster

O ee=d

O me=O 0 oo
ElgH EleH ==

Backend
(disks array) (disks v

Serial

e Parallel

— Lustre
- GPFS

Parallel

Storage Layouts

* Working ($Home)

- Safe and Slow storage.
- Cheep
- Bad for I/O

e Scratch

——
e

ol i

- Unsafe and Fast storage
- Expensive
- Volatile and great for 1/O
* Archiving
- disaster-proof storage
- Incredible slow (random) access
— Backup Policies

Software Layout

Your are here!

Queue Resource Scheduler

Tools chains

Resources

Tool Chains

* Set of self-standing libraries and applications to
perform a class of jobs. (e.g. astro, bioinfo,
optimization, etc).

* System wide (one for all).

- Compiled and Installed by admins.
* User Space (each one has its own).

- Compiled and installed by the user in their homes
directories.

Resources Manager

* Scheduler: allocate resources to perform a job.

e Job: set of instructions and resources to
perform a task.

* Task: involves preparing the environment
and Input data needed to run an application.

Resource specifications

+
Instructions to perform a task

Jobs: Parallel v/s Distributed

(—/ . \\—)
CPU O { crul) (cruz) CPU 3
v v v ¥

Process Process Process Process

W W W W

Result

Jobs: Parallel v/s Distributed

(—// 3
{ crul) (cruz) CPU 3

CPU O

— Sl
o™ |
ok

Jobs: Parallel v/s Distributed

Working with a HPC
System

Input data
and results

Instructions to
perform a task

Command
Interpreter

Job

Job Scripting

Applications

Job Scheduler Directives

#!/bin/bash

Resource specification
#% -1 h_rt=1:00:00

#$ -cwd

#$ -3y

#$ -V

#$ -notify

User Notification

#$ -m abes

#$ -M myemail@domain.com
Job name

#$ -N jobname

Command interpreter

#$ -S /bin/bash

Parallel environment: openmpi,openmp,etc
#$ -pe openmpi 128

Job Array

#$ -te 1:1000

Queue to use

#% -q all.g

* Grid Engine

* PBS

e Slurm

Job Scheduler Directives

#!/bin/bash

number of nodes and processes per node
#PBS -1 select=4:mpiprocs=8
resources

#PBS -1 mem=213mb

#PBS -1 walltime=2:00:00
#PBS -1 cput=1:00:00

name of job

#PBS -N jobname

User notificacion

#PBS -m bea

#PBS -M myemail@domain.com
Use submission environment
#PBS -V

Queue to use

#PBS -q default

* Grid Engine

* PBS

e Slurm

Job Scheduler Directives

#!/bin/bash

ask for 4 full nodes

#SBATCH -N 4

number of tasks per node
#SBATCH —ntasks-per-node=8

Number of cores

#SBATCH -n 1

shared or exclusive use
#SBATCH --exclusive

ask for 1 day and 3 hours of run time
#SBATCH -t 1-03:00:00

Account name to run under
#SBATCH -A <account>

a sensible name for the job
#SBATCH -J my job_name

set the stdout file

#SBATCH -o myjobname.%j.out

User notification

#SBATCH --mail-type=end

#SBATCH --mail-user=my@email.com

* Grid Engine

* PBS

e Slurm

Environment Modules

* Configure the environment to run a particular
application (or a set of applications)

- Environmental variables:

. PATH
. LD LIBRARY_ PATH
LD RUN_PATH

- Library versions and locations
« BOOST_HOME, ATLAS HOME, etc
- Compilation & execution flags
« CFLAGS, LDFLAGS, CXXFLAGS, etc.

Environment Modules

* Example: module available

[jcm@leftraru ~]$ module available
-------------------------- /home/jcm/modulefiles ---------------mmmmmi -
astro/3.0-dev astro old/0.1 astro old/0.2 fastQC spark

---------------------- /usr/share/Modules/modulefiles -------------------------
dot module-git module-info modules null use.own

-------------------------- /home/Modules/modulefiles --------------------------

14-mp gurobi/6.0.3 openblas/0.2.15
ace/6.3.3 gurobi/6.0.4 opencv/2.4.13
aims/071914 gurobi/6.5.1 openfoam/2.3.1
aims/071914 7 gurobi/7.0.2 openfoam/2.4.0
alps/2.2 hdf5/1.8.13 openmpi/1.10.1
amber/14 hdf5/1.8.15 openmpi/1.10.2
ampl/20021038 hmmer/3.1b2 openmpi/1.10.3
gsl/2.1 nwchem/6.6 yade/1.20.0
gts/121130-snapshot nwchem/6.6-test zlib/1.2.8
gurobi/6.0.0 openbabel/2.3.2

[jecm@leftraru ~]$

Environment Modules

* module show {module name/version}

[jcm@leftraru ~]$ module show astro/3.0

/home/Modules/modulefiles/astro/3.0:

module load intel/2017c

module-whatis Sets up the AstroLab 3.0 toolchain in your environment.
setenv ASTRO HOME /home/apps/astro

prepend-path PATH /home/apps/astro/bin

prepend-path PATH /home/apps/astro/sbin

prepend-path LD LIBRARY PATH /home/apps/astro/lib

prepend-path PKG CONFIG PATH /home/apps/astro/lib/pkgconfig
prepend-path MANPATH /home/apps/astro/home/apps/man

[jcm@lefraru ~]1$%

Environment Modules

* module load {module name/version}

e module list

[jcm@leftraru ~]$ module load astro/3.0

[jcm@leftraru ~]$ module list
Currently Loaded Modulefiles:

1) astro/3.0

[jecm@leftraru ~]1$ echo $LD LIBRARY PATH
/home/apps/astro/1lib:/home/apps/intel/2017/itac/2017.3.030/mic/slib:
/home/apps/intel/2017/itac/2017.3.030/intel64/slib:/home/apps/intel/2017/itac/
2017.3.030/mic/slib:/home/apps/intel/2017///itac/2017.3.030/intel64/slib:/home/apps
/intel/2017/compilers _and libraries 2017.4.196/linux/compiler/lib/intel64:

[jcm@leftraru ~]$ echo $PATH
/home/apps/astro/sbin:/home/apps/astro/bin:/home/apps/intel/2017/

advisor 2017.1.3.510716/bin64:/home/apps/intel/2017/vtune amplifier xe 2017.3.0.510739
/bin64:/home/apps/intel/2017/inspector 2017.1.3.510645/bin64:/home/apps/intel/2017/

itac/2017.3.030/intel64/bin: ..

[jcm@leftraru ~]$

Slurm Jobs (sbatch)

e Script execution within a resource allocation

» Executed by sbatch or salloc + srun

* Only execute scripts (not binaries)

e CPUs/ cores (-c)

— Number of cores per
process

e Tasks (-n)
— Number of processes to
launch within this job
* Nodes (-N)

— Number of nodes used to
allocate processes

run single process with 1 core (-c default)
#SBATCH -n 1
#SBATCH -N 1

run 10 processes, each one with 1 core, within
a single node (mpi)

#SBATCH -n 10

#SBATCH -N 1

run 10 processes, each with 1 core, allocating
processes among 3 nodes (mpi)

#SBATCH -n 10

#SBATCH -N 3

run 5 processes, each with 4 cores, allocating
processes among 3 nodes (openmp + mpi)

#SBATCH -c 4

#SBATCH -n 10

#SBATCH -N 3

Slurm Job Steps (srun)

Script or binary execution within a resource allocation

Executed by srun or salloc + srun

Execute scripts and binary programs

CPUs / cores (-c)

— Number of cores per
task

Tasks (-n)
- Number of tasks
Nodes (-N)

- Number of nodes used to
allocate tasks

Exclusive (--exclusive)

- Resources are exclusive
for the task. Otherwise all allocated
resources will be available for each
jobstep

A #HH A ©» A #H H R A A H*

run myapp.exe with 3 cores (openmp or threaded)
srun -n 1 -c 3 myapp.exe

run 4 times myapp.exe with 1 cores
srun -n 4 -c 1 myapp.exe

run 4 times myapp.exe with 1 cores in a single
node with exclusive allocation (the node is used
only for this user/process

srun -n 4 -c 2 -N 1 --exclusive myapp.exe

run 4 times myapp.exe with 1 cores
srun -n 4 -c 1 myapp.exe

mpi run of mympiapp.exe with 5 cores
mpirun -n 5 mympiapp.exe

mpi run of mympiapp.exe with 5 cores with
slurm / mpi integration
srun -n 5 mympiapp.exe

Slurm Job Array (sbatch)

Script multiple execution within a resource allocation varying a task

Index
Executed only by sbatch
Fixed number of tasks

Array (--array)

- start-end:step (range)

- 1,3,4-7 (selective)

- 1-100%5 (batch of 5 tasks)
Env. Variables

- SLURM_ARRAY_TASK_ID
- SLURM_ARRAY_TASK_COUNT

Output (stdout) of each task
- output=mytask.%A.%a

* %A = JobID
* %a = Job Array Task id

$ cat my-jobarray.slurm
#!/bin/bash

#SBATCH -J my job array
#SBATCH -n 1

#SBATCH --array=1-10
#SBATCH -p levque

HOST="hostname"
echo “Tasks $SLURM ARRAY TASK ID \
running in $HOST”

$ sbatch my-jobarray.slurm
Submitted batch job 8439931

$ cat slurm-8439931 *.out

Tasks 1 running in levque001
Tasks 2 running in levque001
Tasks 3 running in levque003
Tasks 4 running in levque005

Tasks 9 running in levque029
Tasks 10 running in levque029

$

Slurm JobStep Array (sbatch+srun)

* Script execution with variable number of tasks within a

resource allocation

$ cat my-jobste-array.slurm
#!/bin/bash

#SBATCH -J my jobstep array
#SBATCH -n 10

#SBATCH -p levque

echo "master Tasks $SLURM JOB ID running \
in “hostname™ "

NUM TASKS=20
for task in “seq 1 $NUM TASKS';
do
srun --exclusive -n 1 -N 1 -p levque \
./jobstep.slurm &
done
wait
echo "done"

$ cat jobstep.slurm

#!/bin/bash

echo "Task $SLURM STEP ID running \
in host “hostname™"

exit 0

$

$ sbatch my-jobstep-array.slurm
Submitted batch job 8440039

$ cat slurm-8440039.out | grep Task
master Tasks 8440039 running in levque029
Task 8 running in host levque030
Task 7 running in host levque030
Task 0 running in host levque029
Task 11 running in host levque030
Task 10 running in host levque030
Task 3 running in host levque029
Task 1 running in host levque029
Task 12 running in host levque029
Task 2 running in host levque029
Task 9 running in host levque030
Task 6 running in host levque029
Task 13 running in host levque030
Task 14 running in host levque030
Task 4 running in host levque029
Task 15 running in host levque030
Task 16 running in host levque030
Task 19 running in host levque030
Task 5 running in host levque029
Task 17 running in host levque030
Task 18 running in host levque030

$

Interacting with the Slurm

sbatch job script.slurm

« Submit job script to the queue (partition)
srun

 Run a command in a compute node (a jobstep)
squeue

« Show only the status of your jobs in the queue
squeue -S

« Show the steps associated current running jobs
scontrol show job Job-ID

« Show the status of Job-ID
scontrol show node

« Show the status of a particular node
sinfo

* Show the status of each partition (queue)
sinfo -N

* Show the status of each node showing their partitions and status
scancel Job-ID

« Cancel (running) and delete a job from the queue

Creating (Slurm) Jobs

#!/bin/bash

#SBATCH -n 1

#SBATCH -N 1

#SBATCH -p levque

#SBATCH --exclusive

#SBATCH - -mem=4G

#SBATCH -J sextractor
#SBATCH -0 sextractor.%j.out
#SBATCH -e sextractor.%j.err

module load astro

echo “Running at “hostname -s”
echo “Starting at "date '+%c'™”

INPUT FITS=%$1
WEIGHT FITS=%$2

sex $INPUT FITS -CATALOG NAME catalogue.cat \
-WEIGHT IMAGE $WEIGHT FITS

echo “Ending at “date '+%c'™”
echo “done”

Submitting & Monitoring Jobs

[jecm@leftraru ~]$ sbatch run-sextractor.slurm ./Blind 03 N1 01.fits.fz proj.fits
Blind 03 N1 01 wtmap.fits.fz proj.fits
Submitted batch job 8439444

[jcm@leftraru ~]1$ squeue
JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

8439444 levque sextract jcm R 0:09 1 levque030

[jcm@leftraru ~]$ cat sextractor.8439444 . out
Running at levque030

Starting time : Mon 21 Aug 2017 09:12:19 AM -03
Ending time : Mon 21 Aug 2017 09:12:24 AM -03

Done

[jcm@leftraru ~1$%

* watch is your friend

- watch -n 1 “squeue” : show squeue at 1 second
Interval

* Ganglia is your best friend

mailto:jcm@leftraru

Monitoring Jobs

* Ganglia is an open source monitoring system
developed in the NPACI (UCLA) and widely
used to monitor HPC clusters.

http://monitor.nlhpc.cl/ganglia

* Queue Is monitored at “host overview” in the frontend.

 Compute nodes “host overview” gives you the state of your
processes (require an extra plug-in)

* Useful metrics such as memory and network consumption are shown
In an aggregated way as well as in a host basis way.

http://monitor.nlhpc.cl/ganglia

Programming In
a HPC system

A crossroad between
bash and python

Programming in a HPC System

* Two ways
— Using Bash (or any other interpreter)
scripting
- Using a high level language
* Python
* C/C++ (for bad asses)
» Java (bad idea!)

* Or any other language allowing process management
* Programming frameworks

BUILT DATA ANALYTICS PIPELINES USING
PYTHON, _.

i

b

- Spark

- Python dispy/pp/multiprocessing
- Celery

- Hive

- Etc (the list is looooooong)

What do you choose: Blue or red?

| WILL MAKE YOU AN OFFER YOU

CANNOT REFUSE

% By
£
N

BASH EVERYWHERE . —

The Blue PIll: BASH

EEEEEEEEEEEEEEEEEEEE

Pros cons

* Quick and easy * Data sharing based on
shared file-system

* Limited (but sufficient)
process control

* Fast development

e Easy to call external
programs

« GNU tools available! * Cryptic orchestration code

* Limited (and costly)

 Small orchestration . .y
parsing abilities

footprint (overhead)

* Limited (in memory) data

* Direct interaction with the . .
structures for data indexing

resource manager (queue)

The Red Pill: & python_

Pros Cons (S am |
Rich language * More complex development
Better process * Indirect access to the
management resource manager (queue)

* Limited thread
Implementation (only python
2 series)

Many data structures for

data indexing
SR
Data serialization!! . Module maintenance

Many design patterns » Higher overhead per process

Great parsing abilities (in memory)
Object oriented * Intelligent Data sharing may
programming be more complicated than

sharing via filesystem

Bash for
HPC job scripting

Bash process control (easy fork)

& : detach execution in
background

walit : wait for a detached
process to finish

- No args: all of them

- pid arg: wait for job with given
pid

Bash functions cannot be

called as commands for
tasks and jobs (buuuu!)

jobs -p : list of detached
jobs

$ cat my-jobste-array.slurm
#!/bin/bash

#SBATCH -J my jobstep array
#SBATCH -n 10

#SBATCH -p levque

echo "master Tasks $SLURM JOB ID running \
in “hostname™"

NUM TASKS=20
for task in “seq 1 $NUM TASKS';
do
srun --exclusive -n 1 -N 1 -p levque \
./jobstep.slurm &
done
wait
echo "done"

$ cat jobstep.slurm

#!/bin/bash

echo "Task $SLURM STEP ID running \
in host “hostname™"

exit 0

$

Bash arguments control (xargs)

* Grouping of
arguments

* Evaluate in parallel
arguments

* Almost the same
functionality than
GNU parallel

e Can be used with built

INn functions

$ cat input.file

1

2

3

9

10

group arguments in 4

$ cat input.file | xargs -n 4

1234

567 8

9 10

print an argumente via 2 child processes

$ cat input.file | xargs -n 1 -P 2 -T {} \
bash -c 'echo "$@";sleep 1' {}

1

2

3

4

$

I'M NOT SAYING IT'S MAGIC

GNU Toolchain

DISCLAIMER

Do not try to compete with GNU tools, they have many
years of code maturity and they do their work so efficient
that it looks like they use black magic to get the job
done

e gcc, make, coreutils, binutils, build system (autotools), debugger,
bison, m4

* https://en.wikipedia.org/wiki/List_of GNU_Core_Utilities_commands

* You can mostly do whatever you need only by

combining GNU commands and bash statements
In an executable script.

https://en.wikipedia.org/wiki/List_of_GNU_Core_Utilities_commands

Python for
HPC job scripting

S Lol Sil0S
. A E - A = . RPN,
g llllulhr.e.amng 3
-
uEs. P
l » e _) -
N i T -

n Python -

Process / Thread

Main Memory
(RAM)

Main Memory I I
Secondary (RAM) Thread 1 Thread 2
Memory Sfﬂ?nqgf;y
(disc) Process /l Process Memory / (disc) FliEs==e Process Memory
. | :
é Process /l Process Memory / - Threiad : Thr:ad -
Process // Process Memory / Threlad 7 Threlad 8 S
Heavy independent tasks. Light and cooperative tasks.
Different memory spaces, file descriptors, * The same memory space, file descriptors,
stack, etc. stack, etc.
Single control routine (the main function) * Multiples execution controls (one per thread)

« Each thread has full access to the same

Each child process copies the memory memory space of the father

space of the father.

 They communicate each other directly (via

Different processes uses Inter Process variables)

Communication for data exchange.

q : locki hani * Itimplements a locking mechanism for
It does not require a locking mechanism exclusive memory access.

Synchronous / Asynchronous

Client Server * Blocks the calling
Client Server thread.
synctask .
’ > StartTask Task1 * Easy to determine
Block Client | S o - state of execution
— e Hard to (fully) exploit
immediately | StartTask R multicore
architectures
FinishTask Task 2
Task n FinishTask X
Unblock)) * The calling thread
Client Nt : .
- Notily for x FinishTask1 Contlnu_es Its
- execution.
Notify for 1 Hard to determ.ine
"'— state of execution
(let's the parallelism
begin)
Synchronous ASynchronous e Lazy Evaluation

e Future / Promise
* Wait / Notify

Locks / Mutex / Semaforos

Thread 1| Thread 2

* Concurrency
- Lock \
(aka critical section).

critical section
(shared memory)

- Semaphore Mutex Mutex
(aka mutex)
shared resource

. Semaphore
- Counting semaphore W e N
(aka semaphore). e I
ﬁfiﬁz #3 @%‘‘
& :: G@;g@
shared resource

%
%

~
2

Future/Promise

S(I\'llll II[TELLING
When you promise to do something g3
In the near future and the time to
collect arrives

A

THE LANNISTERS uwn'rs PAY, ﬂw

Resolve, Reject

Promises chain: « = Pronise(do sonething)
. then(do anotner in
then .. then .. then .done(you are set) ’

.catch(something went wrong)

Each promise should
run asynchronously

Result = x.get()

Lambda functions

Lambda Functions

* An anonymous function that takes
a function as an argument and

returns a function. R
% THISISLAMBDA,

e |t can be use as a

functional > x = lambda x,y: x+y
> print(x(1,2))
3
* It can be use for lazy > 1 < Lambda g: g(x
evaluation. 7
> def p(str)
. rint(str)
° Pvﬂfir)ss, flrtEBr, EEt(:, etfc > i(g)lambza X : x(“resolved”)
re;o$ved

Multiprocessing (mp)

e Based on Unix Processes

 \WWorks in *Nix and
Windows

* Local or Remote (by
hand)

* Allow to easily share data
among processes

* Synchronization (locks)

* Rich in verbs to write a
nice code: Pools,
managers, queues, locks,
pipes, events.

$ cat shmem.py
from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927
for i in range(len(a)):
ali] = -a[i]

if _name__ =='_ main__"
num = Value('d’, 0.0)
arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print num.value
print arr[:]

$ python shmem.py

3.1415927

[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
$

Python Threads

* API compatible with
multiprocessing

* Works in *nix y Windows

* GIL: Only one thread
can run at a time!!!

* Share memory space with
the progenitor (parent)

- Also can have local data

 More verbs to write code:
Conditions, Locks
(Rlocks), Semaforos,
Events, Timers.

$ cat threads.py
import threading, logging, time, random

logging.basicConfig(level=logging.DEBUG,
format='(%(threadName)-10s) %(message)s’,

)
class MyThread(threading.Thread):

def run(self):
wt = random.randint(1,10)
logging.debug('running for %d’,wt)
time.sleep(wt)
logging.debug('done’)
return

threads =[]

for i in range(5):
threads.insert(i,MyThread())
threads[i].start()

[t.join() for t in threads]

$

Parallel Python (pp)

Oriented to use many
machines in a distributed
processing scheme.

Simple way to implement
remote multiprocessing

Based on the
Job - Submit - results
paradigm

Dynamic number of
workers

“Dynamic load balance”
multi-platform.

You need to deploy the
worker server (ppserver.py)

import math, sys, time, pp

def worker(n):
""" a dummy worker that compute n*n
response = n*n
return response

tuple of all parallel python servers to connect with
ppservers = ()

ncpus = int(sys.argv[1])
job_server = pp.Server(ncpus, ppservers=ppservers)

print "Starting pp with", job_server.get_ncpus(), "workers"
start_time = time.time()

The following submits one job per element in the list
inputs = range(1,100000)
jobs = [(input, job_server.submit(worker,(input,))) for input in inputs]
for input, job in jobs:
print "result: ", input, "is", job()

print “Time elapsed: ", time.time() - start_time, "s"
job_server.print_stats()

Distributed Python (dispy)

Similar to parallel
python.

Explicit Worker:
distnode.py

You can implement
your own scheduler

No communication
among workers

You can transfer files
among workers

def compute(n):

import time, socket
print("woker sleeping for %d",n)
time.sleep(n)

host = socket.gethostname()
return (host, n)

if _name_==' main__ "

import dispy, random
cluster = dispy.JobCluster(compute)
jobs =]
for i in range(10):
job = cluster.submit(random.randint(5,20))
job.id =i
jobs.append(job)
for job in jobs:
host, n = job() # waits for job to finish and returns results
print('%s executed job %s at %s with
%s' % (host, job.id, job.start_time, n))
cluster.print_status()

Literature ?

il Bl B ol T A o el il il S |
Cutting corners to meet arbitrary management deadlines

Essential

Copying and Pasting

from Stack Overtlow

The Practical Developer

O’REILLY" @ThePracticalDev

It is hard to be original
when searching for a
problem in Google

(someone always already did it and there
are several good/bad answers)

Esiential jﬁ

Googling the

Error Message

O RLYT

STACK OVERFLOW
>
v

I".,

YOU'RE MY ONLY HOPE

The Take Aways

Definitions needed to understand a HPC
system.

Overview about architecture and components of
a HPC system.

Software, Applications, tools-chains, scheduler,
modules

Basic concepts for programming in a HPC
system.

Overview of parallel/distributed programming
frameworks for Python.

