{ "cells": [ { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "978ff1f5-ffac-4819-b832-db261a5fb32c" }, "slideshow": { "slide_type": "slide" } }, "source": [ "
\n", "\n", "# Introduction to Bayesian Methods for Data Science\n", "**Tamás Budavári** - budavari@jhu.edu
\n", "\n", "- Bayesian inference\n", "- Prior: proper vs improper\n", "- Likelihood function\n", "- Maximum Likelihood Estimation\n", "- Link to least squares\n", "- Online learning\n", "- Sampling for posteriors\n", "- Hypothesis testing\n", "\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "

Bayesian Inference

\n", "\n", "Rev. Thomas Bayes (c.1701-1761)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "9e13cc51-e810-49c3-ac4c-82398c17211d" } }, "source": [ "### Joint & Conditional Probability\n", "- Consider random variables $X$, $Y$ of events. Their **joint probability** is\n", "\n", ">$\\displaystyle P(X, Y) \\neq P(X)\\,P(Y)$ \n", ">\n", "> instead\n", ">\n", ">$\\displaystyle P(X, Y) = P(X)\\,P(Y \\lvert X)$ \n", ">\n", "> where $P(Y \\lvert X)$ is the **conditional probability** of $Y$ given $X$\n", "\n", "- For example, if $X$ represents the event of flipping head and $Y$ is tail on the same trial, $P(X,Y)=0$ because $P(Y \\lvert X)=0$. \n", "\n", "- But on separate trials, the events would be independent and we would have $P(Y \\lvert X)=P(Y)$.\n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "4349fff5-7a9a-49be-a174-0f302cc3e27b" } }, "source": [ "### Bayes' Theorem\n", "- The joint probability of $X$ and $Y$ discrete events\n", "\n", ">$\\displaystyle P(X,Y) = P(X)\\,P(Y \\lvert X)$ \n", ">\n", "> and \n", ">\n", ">$\\displaystyle P(Y,X) = P(Y)\\,P(X \\lvert Y)$ \n", ">\n", "> Their equality yields\n", ">\n", ">$\\displaystyle P(X \\lvert Y) = \\frac{P(X)\\,P(Y \\lvert X)}{P(Y)}$ \n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "a4ed11a3-064c-4aba-afc5-27020039d755" } }, "source": [ "### Probability Densities\n", "- It is also true on the continous case and PDFs\n", "\n", ">$\\displaystyle P(X \\lvert y) = \\frac{P(X)\\,p(y \\lvert X)}{p(y)}$ \n", ">\n", "> and\n", ">\n", ">$\\displaystyle p(x \\lvert Y) = \\frac{p(x)\\,P(Y \\lvert x)}{P(Y)}$ \n", ">" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "be3e9a65-83ef-4b03-a7e1-3fdc67433261" } }, "source": [ "- Also\n", "\n", ">$\\displaystyle p(x \\lvert y) = \\frac{p(x)\\,p(y \\lvert x)}{p(y)}$ \n", ">\n", "> where\n", ">\n", ">$\\displaystyle p(y) = \\int p(x)\\,p(y \\lvert x)\\,dx$ \n", ">\n", "> to ensure that\n", ">\n", ">$\\displaystyle \\int p(x \\lvert y)\\,dx = 1$ " ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "c0cae685-cadf-4c80-abd1-5bfdaa093971" } }, "source": [ "### Probabilitistic Model\n", "- From data $D$ we can **infer** the parameters $\\theta$ of model $M$ \n", "\n", ">$\\displaystyle p(\\theta \\lvert D) = \\frac{p(\\theta)\\,p(D \\lvert \\theta)}{p(D)}$ \n", ">\n", "> or including the model $M$ explicitly\n", ">\n", ">$\\displaystyle p(\\theta \\lvert D,M) = \\frac{p(\\theta \\lvert M)\\,p(D \\lvert \\theta,M)}{p(D \\lvert M)}$ \n", "\n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "6f060d06-d47e-4e84-9d27-313e2e9f2515" } }, "source": [ "### Terminology\n", "- From data $D$ we can **infer** the parameters $\\theta$ of model $M$ \n", "\n", ">$\\displaystyle p(\\theta \\lvert D) = \\frac{\\pi(\\theta)\\,{\\cal{}L}_{\\!D}(\\theta)}{Z}$ \n", ">\n", "> where the normalization\n", ">\n", ">$\\displaystyle Z = \\int \\pi(\\theta)\\,{\\cal{}L}_{\\!D}(\\theta)\\ d\\theta $ \n", "\n", "- The **posterior** is proportional to the **prior** times the **likelihood function** " ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "b8920874-4b6e-4946-a26e-461506850628" } }, "source": [ "### Data\n", "- A set of independent measurements\n", "\n", ">$\\displaystyle D = \\Big\\{x_i\\Big\\}_{i=1}^N$\n", "\n", "- E.g., measuring the temperature in $N$ cities" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "28ccfbf6-3a33-4e28-a9f3-93e3e230a3fe" } }, "source": [ "### Model Parameterization\n", "\n", "- For example, the model is that all cities have the same temperature\n", "\n", "> We also need to state our prior knowledge about the temperature\n", "\n", "- Let $\\mu$ represent that temperature in all cities (same for all)\n", "\n", "> We pick an appropriate prior - often people say we use a \"flat\" prior because we don't know..." ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "fa034999-d4ca-4a7a-bfe1-738e03123fac" } }, "source": [ "### Alternative Parameterization\n", "\n", "- We could have chosen another parametrization, say $\\tan \\phi$ with $\\phi \\in \\left(-\\frac{\\pi}{2},\\frac{\\pi}{2} \\right)$\n", "\n", "> Clearly a \"flat prior\" means something different!\n", "
\n", "> What should be the prior? Needs careful consideration!\n", "\n", "- Non-informative prior?\n", "\n", "> For more, see [Jeffreys](https://en.wikipedia.org/wiki/Harold_Jeffreys) prior" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "16aa483a-9bdc-419c-ab32-ddb981316486" } }, "source": [ "### What is the likelihood function?\n", "\n", "- For a set of independent measurements\n", "\n", ">$\\displaystyle {\\cal L}_{\\!D}(\\mu) = p(D \\lvert \\mu) = p(\\{x_i\\!\\}\\lvert\\mu) = \\prod_{i=1}^N p(x_i\\lvert\\mu) = \\prod_{i=1}^N \\ell_{\\!i}(\\mu)$\n", "\n", "- For example, Gaussian uncertainties\n", "\n", ">$\\displaystyle \\ell_{\\!i}(\\mu) = \\frac{1}{\\sqrt{2\\pi\\sigma_i^2}}\\ \\exp\\left\\{-\\frac{(x_i-\\mu)^2}{2\\sigma_i^2}\\right\\}$\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "821311cd-c763-4c57-be59-e545cd81188e" } }, "source": [ "### Detour: Improper Priors\n", "\n", "- The posterior PDF is\n", "\n", ">$\\displaystyle p(\\mu|D) = \\frac{\\pi(\\mu) \\prod {\\ell}_{\\!i}(\\mu)}{\\int \\pi(\\mu) \\prod {\\ell}_{\\!i}(\\mu)\\,d\\mu}\\ $ \n", "\n", "- Uniform prior?\n", "\n", "> Using $\\pi(\\mu)\\!=\\!1$ is clearly wrong but what if the prior is flat over the interval where likelihood function is non-zero (if!), the normalization cancels from the ratio\n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "37cdbbee-2d2a-4214-b26b-ba7a91ba566e" } }, "source": [ "### Estimation\n", "\n", "- Expected value\n", "\n", ">$\\displaystyle \\int \\mu\\, p(\\mu \\lvert D)\\, d\\mu$\n", "\n", "- Variance: 2nd central moment\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "3ee5d8bb-95e3-48f1-bc1d-89b2874f040f" } }, "source": [ "### Maximum Likelihood Estimation\n", "\n", "- Maximizing ${\\cal{}L}$ is the same as minimizing $-\\log{\\cal{}L}$ \n", "\n", "> $\\displaystyle -\\log{\\cal{}L(\\mu)} = \\mathrm{const.} + \\sum_{i=1}^N \\frac{(x_i\\!-\\!\\mu)^2}{2\\sigma_i^2}$\n", "\n", "> Cf. the method of least squares\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "nbpresent": { "id": "14fae3f4-c070-495a-a7b6-2253f5539878" } }, "source": [ "### Result\n", "\n", "- Weighted average! Using $w_i = 1 \\big/ \\sigma_i^2$\n", "\n", "> $\\displaystyle \\hat{\\mu} = \\frac{\\sum w_i x_i}{\\sum w_i}$\n", "\n", "- Also variance!\n", "\n", ">$\\displaystyle \\frac{1}{\\sigma_{\\mu}^2} = \\sum w_i = \\sum \\frac{1}{\\sigma_i^2}$\n", "\n", "> If all the same $\\sigma$, we have\n", "
\n", ">$\\displaystyle \\frac{1}{\\sigma_{\\mu}^2} = \\frac{N}{\\sigma^2}$\n", "$\\ \\ \\ \\rightarrow\\ \\ \\ \\\n", "\\displaystyle \\sigma_{\\mu} = {\\sigma} \\big/{\\sqrt{N}}$\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exercise: your 1st classification problem \n", "\n", "Among some observed objects 1% belongs to a special type, e.g., quasars mixed with many stars. Using a classification method 99% of these special objects can be correctly selected. This method also selects 0.5% of the other types of objects erroneously.\n", "

\n", "What is the probability of having a special type if an object is selected by the method?\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%pylab inline\n", "pylab.rcParams['figure.figsize'] = (4,3)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exercise: numerical intergration in 1D \n", "\n", "Implement Bayes' rule to infer a constant based on $N$ (independent) measurements\n", "1. Assume Gaussian likelihood with $\\sigma=1$ and improper prior\n", "1. Use function `np.trapz(f,x)` for numerical integration\n", "1. Start from the code below " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "data = np.random.randn(5) # fake data points from normal distribution\n", "mu = np.linspace(-2,2,1000) # grid over the parameter\n", "\n", "# missing code here...\n", "\n", "plot(mu,pdf); xlabel('mu'); ylabel('posterior');\n", "np.trapz(mu*pdf,mu) # expectation value" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Another improper prior\n", "\n", "Uniform but cannot be negative, e.g., temperature in Kelvin\n", "> $\n", "\\pi(\\mu) = \\left\\{ \\begin{array}{ll}\n", " 0 & \\mbox{if $\\mu < 0$} \\\\\n", " 1 & \\mbox{if $\\mu \\geq 0$} \n", "\\end{array}\\right. \n", "$\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "prior = np.ones_like(lk)\n", "prior[mu < 0] = 0\n", "\n", "numerator = prior * lk\n", "pdf0 = numerator / np.trapz(numerator,mu)\n", "\n", "plot(mu,pdf,'r')\n", "plot(mu,pdf0,'g--') \n", "xlabel('mu'); ylabel('posterior');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Normal prior\n", "\n", "Compare with previous results for different $\\sigma$ values, i.e., `scale`" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from scipy.stats import norm as gauss\n", "\n", "plot(mu,pdf, 'r', alpha=0.9)\n", "plot(mu,pdf0,'g--', alpha=0.9) \n", "\n", "for s in [5,0.2]:\n", " numerator = lk * gauss.pdf(mu,scale=s)\n", " pdfG = numerator / np.trapz(numerator,mu)\n", " plot(mu,pdfG,'k:',lw=2, alpha=0.9)\n", " \n", "xlabel('mu'); ylabel('posterior');" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Multiple Datasets\n", "\n", "- If the data set $D$ consists of two subsets of $D_1$ and $D_2$, we can consider them together or separately\n", "\n", ">$\\displaystyle p(\\theta \\lvert D_1,D_2) = \\frac{p(\\theta)\\, p(D_1, D_2 \\lvert \\theta)}{p(D_1, D_2)}$\n", "
\n", "> also \n", "
\n", ">$\\displaystyle p(\\theta \\lvert D_1, D_2) = \\frac{p(\\theta \\lvert D_1)\\, p(D_2 \\lvert \\theta, D_1)}{p(D_2 \\lvert D_1)}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "- Because\n", "\n", ">$\\displaystyle p(\\theta \\lvert D) = p(\\theta \\lvert \\color{green}{D_1}, \\color{red}{D_2}) = \\frac{p(\\theta \\lvert \\color{green}{D_1})\\, p(\\color{red}{D_2} \\lvert \\theta, \\color{green}{D_1})}{p(\\color{red}{D_2} \\lvert \\color{green}{D_1})}$\n", ">$\\displaystyle = \\frac{p(\\theta)\\,p(\\color{green}{D_1} \\lvert \\theta)\\, p(\\color{red}{D_2} \\lvert \\theta, \\color{green}{D_1})}{p(\\color{green}{D_1})\\,p(\\color{red}{D_2} \\lvert \\color{green}{D_1})}$\n", ">$\\displaystyle = \\frac{p(\\theta)\\,p(\\color{green}{D_1},\\color{red}{D_2} \\lvert \\theta)}{p(\\color{green}{D_1}, \\color{red}{D_2})}$\n", ">$\\displaystyle = \\frac{p(\\theta)\\,p(D \\lvert \\theta)}{p(D)}$\n", "\n", "- Incremental learning\n", "\n", "\n", ">$\\displaystyle D = \\big\\{ \\color{green}{D_1},\\ \\color{red}{D_2},\\ \\color{darkblue}{D_3}, \\dots, \\color{black}{D_N} \\big\\}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Characterization of Posterior PDF\n", "\n", "- Mode, Mean, Covariance, etc... For example,\n", "\n", ">$ \\displaystyle \\bar{\\theta} = \\int {\\color{default}\\theta}\\ p(\\theta)\\ d\\theta$\n", ">$ \\displaystyle = \\frac{\\int \\theta\\,\\pi(\\theta)\\,{\\cal{}L}(\\theta)\\,d\\theta}{\\int \\pi(\\theta)\\,{\\cal{}L}(\\theta)\\,d\\theta }$\n", "\n", "\n", "- In general, numerical evaluation is required \n", "\n", "> Randomized algorithms;\n", "> Sampling from distributions\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Caution!\n", "\n", "- Noisy likelihood function with false peak(s)\n", " \n", "> Misleading MLE by an erroneous spike?\n", " \n", "- Mean could be completely off\n", "\n", "> E.g., center of a ring " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sampling \n", "\n", "- How to calculate an integral such as\n", "\n", ">$ \\displaystyle \\langle f(\\theta)\\rangle = \\int f(\\theta)\\,p(\\theta)\\,d\\theta $\n", "\n", "- Approximation using $\\{\\theta_i\\}$ sample from $p(\\cdot)$\n", "\n", ">$ \\displaystyle \\langle f(\\theta)\\rangle \\approx \\frac{1}{n}\\sum_{i=1}^{n} f(\\theta_i) $\n", "\n", "- But we really don't know the posterior that well!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sampling from Prior\n", "\n", "- Prior is better known \n", "\n", "> $ \\displaystyle \\langle f(\\theta)\\rangle =$\n", ">$ \\displaystyle \\frac{\\int f(\\theta)\\,\\pi(\\theta)\\,{\\cal{}L}(\\theta)\\,d\\theta}{\\int \\pi(\\theta)\\,{\\cal{}L}(\\theta)\\,d\\theta }$\n", "\n", "\n", "- Approximation using $\\{\\theta_i\\}$ sample from $\\pi(\\cdot)$\n", "\n", ">$ \\displaystyle \\langle f(\\theta)\\rangle \\approx \\frac{\\sum f(\\theta_i)\\,{\\cal{}L}(\\theta_i)}{\\sum {\\cal{}L}(\\theta_i)} $" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sampling from ...\n", "\n", "- E.g., likelihood?\n", "\n", ">$ \\displaystyle \\langle f(\\theta)\\rangle \\approx \\frac{\\sum f(\\theta_i)\\,\\pi(\\theta_i)}{\\sum \\pi(\\theta_i)} $\n", "\n", "- What about something \"similar\"?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Importance Sampling\n", "\n", "- We usually have integrals such as\n", "\n", ">$ \\displaystyle \\langle f(\\theta)\\rangle = \\int f(\\theta)\\,g(\\theta)\\,d\\theta$\n", "\n", "- If we can't sample from $g(\\cdot)$ but can from a $h(\\cdot)$ \n", "\n", "> s.t. $\\ \\ \\ g(\\theta) \\leq K \\cdot h(\\theta) \\ \\ \\ $ for any $\\theta$ and a suitably large $K$\n", "\n", ">$\\displaystyle \\langle f(\\theta)\\rangle \\approx \\frac{1}{n} \\sum_i^n f(\\theta_i)\\,\\frac{g(\\theta_i)}{h(\\theta_i)}$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Markov-chain Monte Carlo a.k.a. MCMC\n", "\n", "- Instead of independent samples, produce a chain of samples in a special way\n", "\n", "> **Metropolis-Hastings**\n", "> 0. Start from a random $\\theta_t = \\theta_0$ parameter set\n", "> 0. Obtain a new $\\theta'$ from a proposal distribution $Q(\\theta;\\theta_t)$\n", "> 0. Accept $\\theta_{t+1} = \\theta'$ with probability $g(\\theta')/g(\\theta_t)$\n", "> 0. Let $t\\leftarrow t\\!+\\!1$ and go to Step 2.\n", "\n", "- Use the samples of the chain as if taken from the posterior PDF\n", "\n", " - Many other variants \n", "\n", " - Watch out for burn in, correlations, etc..." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### For example\n", "\n", "" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Model Comparison\n", "\n", "- Bayesian hypothesis testing\n", "\n", "> Posterior probability of a model given the data vs another (odds)\n", "

\n", ">$\\displaystyle \\frac{P(M_1 \\lvert D)}{P(M_2 \\lvert D)} = \\frac{P(M_1)\\ p(D \\lvert M_1)\\,\\big/\\,p(D)}{P(M_2)\\ p(D \\lvert M_2)\\,\\big/\\,p(D)}$\n", "

\n", ">$\\displaystyle \\ \\ \\ \\ = \\frac{P(M_1)}{P(M_2)} \\frac{p(D \\lvert M_1)}{p(D \\lvert M_2)}$\n", "

\n", ">$\\displaystyle \\ \\ \\ \\ = \\frac{P(M_1)}{P(M_2)}\\ B(M_1,M_2 \\lvert D)$\n", "

\n", ">Posterior odds $=$ Prior odds $\\times$ the Bayes factor\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Marginal Likelihood\n", "\n", "- Integral over all parameters\n", "\n", ">$\\displaystyle p(D \\lvert M) = \\int p(\\theta \\lvert M)\\ p(D \\lvert \\theta,M)\\,d\\theta$ \n", "\n", "\n", "> Cf. Bayes' rule\n", "

\n", ">$\\displaystyle p(\\theta \\lvert D,M) = \\frac{p(\\theta \\lvert M)\\ p(D \\lvert \\theta,M)}{p(D \\lvert M)}$ \n", "\n", "- No improper prior here!" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Complementer Hypotheses\n", "\n", "- I.e., $P(M_1) + P(M_2) = 1$ also $P(M_1 \\lvert D) + P(M_2 \\lvert D) = 1$ \n", "\n", "> Let $P$ represent the $P(M_1 \\lvert D)$ posterior \n", "
\n", "and $P_0$ be the $P(M_1)$ prior\n", "

\n", ">$\\displaystyle \\frac{P}{1-P} = \\frac{P_0}{1-P_0} B$\n", "\n", "> Hence\n", "

\n", ">$\\displaystyle P = \\left[ 1 + \\frac{1-P_0}{P_0 B\\ } \\right]^{-1} $\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Posterior as fn of ln(B)\n", "logB = np.linspace(-6,6,100) \n", "B = np.exp(logB)\n", "P0 = 0.5\n", "P = 1 / (1 + (1-P0)/(P0*B)) \n", "plt.plot(logB, P,'-');\n", "xlabel('Log of Bayes factor'); ylabel('Posterior'); " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Posterior as fn of ln(B)\n", "with np.errstate(divide='ignore'):\n", " for P0 in [0, 0.5, 0.6, 0.7, 0.8, 0.9, 1]:\n", " P = 1 / (1 + (1-P0)/(P0*B)) \n", " plt.plot(logB, P,'-', label=str(P0));\n", "# sigmoid function cf. neural networks\n", "xlabel('Log of Bayes factor'); ylabel('Posterior'); \n", "legend(loc=4); ylim(None,1.05);" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "anaconda-cloud": {}, "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.3" }, "nbpresent": { "slides": { "0db15b68-434e-4168-b87b-8c022669e794": { "id": "0db15b68-434e-4168-b87b-8c022669e794", "prev": "9d7d757a-65fc-4a11-9255-d6f44b7cd7d0", "regions": { "6d136006-49fb-40d9-94c1-7aa9b7f780bd": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "fa034999-d4ca-4a7a-bfe1-738e03123fac", "part": "whole" }, "id": "6d136006-49fb-40d9-94c1-7aa9b7f780bd" } } }, "1acb2407-3452-43a9-998e-036067e56e7e": { "id": "1acb2407-3452-43a9-998e-036067e56e7e", "prev": "861f7e4d-723f-4bab-8273-6498380d395c", "regions": { "cb08a654-8e86-4073-b831-033065f34bf5": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "be3e9a65-83ef-4b03-a7e1-3fdc67433261", "part": "whole" }, "id": "cb08a654-8e86-4073-b831-033065f34bf5" } } }, "2d51d07f-6d89-43d4-846b-ca0dc6246a3b": { "id": "2d51d07f-6d89-43d4-846b-ca0dc6246a3b", "prev": "582a2192-ea55-41d1-925a-af0037e5eb79", "regions": { "ce8fd56c-bddf-49bb-b934-9b62844872af": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "14fae3f4-c070-495a-a7b6-2253f5539878", "part": "whole" }, "id": "ce8fd56c-bddf-49bb-b934-9b62844872af" } } }, "2d7b1ea3-3bba-4837-8661-bb5154a57cb7": { "id": "2d7b1ea3-3bba-4837-8661-bb5154a57cb7", "prev": "b62bafb2-a360-4698-a1f8-38cacd8c8630", "regions": { "32c42ccc-fffe-4034-89a5-5300897ef541": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "b8920874-4b6e-4946-a26e-461506850628", "part": "whole" }, "id": "32c42ccc-fffe-4034-89a5-5300897ef541" } } }, "301d2155-5b7a-457a-93fc-97f72fa3d455": { "id": "301d2155-5b7a-457a-93fc-97f72fa3d455", "prev": "0db15b68-434e-4168-b87b-8c022669e794", "regions": { "13a84692-d66a-4194-9372-4544e600756a": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "16aa483a-9bdc-419c-ab32-ddb981316486", "part": "whole" }, "id": "13a84692-d66a-4194-9372-4544e600756a" } } }, "3bba41e5-c337-46c7-8891-d1472e516da9": { "id": "3bba41e5-c337-46c7-8891-d1472e516da9", "prev": "ea0b5edb-dffd-4ec9-8638-290a1aec9677", "regions": { "91b168e1-822c-43fa-87ed-47811383617c": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "e5e31e5b-f66c-4c7f-9fca-ddd919059fa1", "part": "whole" }, "id": "91b168e1-822c-43fa-87ed-47811383617c" } } }, "46653369-0661-40cc-b956-361332d6f315": { "id": "46653369-0661-40cc-b956-361332d6f315", "prev": "e4ad3da0-6237-4a55-95fb-a06428a2ba21", "regions": { "fe70bc85-3b45-42c4-99fd-120c47a1826d": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "4349fff5-7a9a-49be-a174-0f302cc3e27b", "part": "whole" }, "id": "fe70bc85-3b45-42c4-99fd-120c47a1826d" } } }, "582a2192-ea55-41d1-925a-af0037e5eb79": { "id": "582a2192-ea55-41d1-925a-af0037e5eb79", "prev": "707540a1-c8f8-47f1-8003-fe25d3423c20", "regions": { "bf516684-c3cc-4e37-81a5-8ba4be359b2f": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "3ee5d8bb-95e3-48f1-bc1d-89b2874f040f", "part": "whole" }, "id": "bf516684-c3cc-4e37-81a5-8ba4be359b2f" } } }, "65d54aeb-8b28-49ef-96ca-93799a8b7897": { "id": "65d54aeb-8b28-49ef-96ca-93799a8b7897", "prev": "3bba41e5-c337-46c7-8891-d1472e516da9", "regions": { "e4e9b2bc-9ca1-433f-adb7-b3c3e3cc41dc": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "570e824d-f0d2-4ee0-a32c-fc20d8dc78f4", "part": "whole" }, "id": "e4e9b2bc-9ca1-433f-adb7-b3c3e3cc41dc" } } }, "707540a1-c8f8-47f1-8003-fe25d3423c20": { "id": "707540a1-c8f8-47f1-8003-fe25d3423c20", "prev": "7e74aab8-84a3-4394-885f-92f97f560083", "regions": { "6bce4587-52cb-4228-b802-b38e002892cf": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "37cdbbee-2d2a-4214-b26b-ba7a91ba566e", "part": "whole" }, "id": "6bce4587-52cb-4228-b802-b38e002892cf" } } }, "7e74aab8-84a3-4394-885f-92f97f560083": { "id": "7e74aab8-84a3-4394-885f-92f97f560083", "prev": "301d2155-5b7a-457a-93fc-97f72fa3d455", "regions": { "4c5ba40b-6e82-47e4-a992-1282d727a173": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "821311cd-c763-4c57-be59-e545cd81188e", "part": "whole" }, "id": "4c5ba40b-6e82-47e4-a992-1282d727a173" } } }, "861f7e4d-723f-4bab-8273-6498380d395c": { "id": "861f7e4d-723f-4bab-8273-6498380d395c", "prev": "46653369-0661-40cc-b956-361332d6f315", "regions": { "7a6f1aa7-fcc3-46d6-ad44-d1dac7ea5c8a": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "a4ed11a3-064c-4aba-afc5-27020039d755", "part": "whole" }, "id": "7a6f1aa7-fcc3-46d6-ad44-d1dac7ea5c8a" } } }, "9d7d757a-65fc-4a11-9255-d6f44b7cd7d0": { "id": "9d7d757a-65fc-4a11-9255-d6f44b7cd7d0", "prev": "2d7b1ea3-3bba-4837-8661-bb5154a57cb7", "regions": { "a027b389-192c-4235-87af-8da05444fdc5": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "28ccfbf6-3a33-4e28-a9f3-93e3e230a3fe", "part": "whole" }, "id": "a027b389-192c-4235-87af-8da05444fdc5" } } }, "b62bafb2-a360-4698-a1f8-38cacd8c8630": { "id": "b62bafb2-a360-4698-a1f8-38cacd8c8630", "prev": "d0a8c858-42da-4085-8e9f-f35cb6607c91", "regions": { "8667f7e5-7002-4d20-9bb6-2461ee04834d": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "6f060d06-d47e-4e84-9d27-313e2e9f2515", "part": "whole" }, "id": "8667f7e5-7002-4d20-9bb6-2461ee04834d" } } }, "d0a8c858-42da-4085-8e9f-f35cb6607c91": { "id": "d0a8c858-42da-4085-8e9f-f35cb6607c91", "prev": "1acb2407-3452-43a9-998e-036067e56e7e", "regions": { "82bc29cf-fd7e-4f73-be21-bbd7f1d174c5": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "c0cae685-cadf-4c80-abd1-5bfdaa093971", "part": "whole" }, "id": "82bc29cf-fd7e-4f73-be21-bbd7f1d174c5" } } }, "e4ad3da0-6237-4a55-95fb-a06428a2ba21": { "id": "e4ad3da0-6237-4a55-95fb-a06428a2ba21", "prev": "65d54aeb-8b28-49ef-96ca-93799a8b7897", "regions": { "c187c83b-38db-44ec-8a18-03240ec0bca5": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "9e13cc51-e810-49c3-ac4c-82398c17211d", "part": "whole" }, "id": "c187c83b-38db-44ec-8a18-03240ec0bca5" } } }, "ea0b5edb-dffd-4ec9-8638-290a1aec9677": { "id": "ea0b5edb-dffd-4ec9-8638-290a1aec9677", "prev": null, "regions": { "30a33912-3209-4e73-a603-05cea335aa3e": { "attrs": { "height": 0.8, "width": 0.8, "x": 0.1, "y": 0.1 }, "content": { "cell": "978ff1f5-ffac-4819-b832-db261a5fb32c", "part": "whole" }, "id": "30a33912-3209-4e73-a603-05cea335aa3e" } } } }, "themes": {} } }, "nbformat": 4, "nbformat_minor": 1 }