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The first astronomical time series analysis
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Abbo of Fleury, 10th century CE



A wondrous star in the neck of the Whale 

Matthew J. Graham 3

Image credit: AAVSO

“If the new star were outside the 

ordinary course of nature, it would tell us 

little about the constitution of the 

universe. “
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A billion time series and counting 
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• Palomar-Quest Synoptic Sky Survey

• SDSS (Stripe 82)

• Catalina Real-time Transient Survey

• Palomar Transient Factory

• Zwicky Transient Factory

• Pan-STARRs

• SkyMapper

• ASKAP

• ThunderKat (MeerKAT)

• KEPLER

• GAIA

• LIGO

• IceCUBE

• LOFAR

• LSST

• SKA

• TESS

• ASAS-SN

• MASTER

• DES

• ATLAS

• BlackGEM

• GoTo

• MeerKAT

• ASKAP

• WISE

• OGLE

• DESI

• SDSS-V

• LAMOST

…
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What we do ask of time series?
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Population behaviors
• Characterize, categorize, classify

Outliers
• Extreme sources

• Physical models
• Predictions

(Cody & Hillenbrand 2018)
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Types of astronomical variability
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Astronomical classes
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Transient classes
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Foundational concepts
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A time series is a set of time-tagged measurements: {𝑿# 𝑡# }
with observation errors 𝝈#
Non-IID

• Data is sequential

Homoskedasticity

• All errors drawn from same process

Ergodicity

• The time average for one sequence is the same as the 
ensemble average:
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Foundational concepts - stationarity
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• The generating process is time independent:

• Joint probability distribution is translationally invariant (strong)

•Mean, variance, autocorrelation are constant (weak)

• Examples:

•White noise is stationary

• GSR 1915+215 has ~20 variability states 

• GARCH models where variance is a stochastic function of time

• Nonstationary time series do not 
have to be stationary in any limit

(Belloni et al. 2000)
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Foundational concepts - stationarity
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• Transformations to achieve stationarity (constant location
and scale):

• Difference the data: 
𝑍# = 𝑋# − 𝑋#+,

• Detrend the data:𝑍 𝑡 = 𝑋 𝑡 − 𝑓(𝑡)
• Stabilize the variance:

𝑍 𝑡 = (𝑋 𝑡 + 𝐴) or log(𝑋 𝑡 + 𝐴)
Test with ACF
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Foundational concepts - sampling
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• Even or regular sampling: 
𝑦 𝑡 = 𝑥(𝑡8 + 𝑛∆𝑡) where 𝑛 = 0,1, … ,𝑚

• Uneven or irregular sampling: 
𝑦 𝑡 = 𝑥 𝑡8 , … , 𝑥(𝑡@)

• Regularization/resampling:

• Bin data onto regular grid: y 𝑡 = ∑BCBDB
∑BCB for 𝑡# ∈ 𝑡F, 𝑡G

• Interpolate: linear, spline, Gaussian process

• Continuous time process:

• Observations are a random sample drawn from a continuous 
process described by some differential equation:

𝑑𝑋 𝑡 = −1𝜏 𝑋 𝑡 𝑑𝑡 + 𝜎 𝑑𝑡𝜖 𝑡 + 𝑏𝑑𝑡
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Foundational concepts – power spectrum
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• Power spectral density tells you everything: 𝑃𝑆𝐷 𝜐 = ℱ(𝑥) R
• PSD is Fourier transform of autocorrelation function:

𝑃𝑆𝐷 𝜈 = T
+U

U
𝐴𝐶𝐹 Δ𝑡 𝑒+RZ#[\]∆𝑡

𝐴𝐶𝐹 ∆𝑡 = 𝔼 𝑥] − 𝜇 𝑥]`∆] − 𝜇 /𝜎R

• The structure function is related to the autocorrelation function:

𝑆𝐹 ∆𝑡 = 2𝜎c 1 − 𝐴𝐶𝐹 ∆𝑡
𝑆𝐹 ∆𝑡 = 0.742 𝐼𝑄𝑅(𝑥)

Discrete FT:

𝑋j = k
lm8

n+,
𝑥l𝑒+RZ#jl/n

Nonuniform Discrete FT:

𝑋j = k
lm8

n+,
𝑥l𝑒+RZ#opqr
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Time series decomposition
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Given any stationary process, Y, there exist:

• a linearly deterministic process, D

• an uncorrelated zero mean noise process, R

• a moving average filter, C

such that:

Different physical processes contribute to 
deterministic dominance D(t) or stochastic
dominance C x R(t).

Deterministic chaos vs. stochastic?

Y (t) =C ×R(t)+D(t)

(Wold’s Decomposition Theorem (1938))

22 August 2019



Characterization – extracting data features
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Common statistical features
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• Timescales:
• Lomb-Scargle

• Variability:
• von Neumann variability (phase-folded)

• Stetson K index

• Morphology:
• Skewness

• Kurtosis

• IQR

• Cumulative sum index (phase-folded) 

• Ratio of magnitudes brighter/fainter than mean

• Trends: 
• Slope percentiles (phase-folded)

• Model:
• Fourier amplitude ratios

• Fourier phase differences

• Fourier amplitude

• Shapiro-Wilk normality test
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Categorization
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(Cody & Hillenbrand 2018)
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Characteristic timescales
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(Sartori et al. 2018)

22 August 2019



Data-derived classes
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(Heinze et al. 2018)
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Not all features are equal
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Richards et al. 2011

Elorietta et al. 2016

D’Isanto et al. 2016

Dubath et al. 2012

Richards et al. 2012
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Periodicity
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𝑥 𝑡 + 𝑃 = 𝑥 𝑡 ; 𝑓 = 1/𝑃

𝑥 𝑡, 𝑓 = 𝐴t sin 2𝜋𝑓 𝑡 − 𝜑t
𝜒R 𝑓 =k

l

𝑥l − 𝑥 𝑡l; 𝑓
𝜎l

R

𝑃 𝑓 = 1
2 �̂�8R − �̂�R(𝑓)

𝜑 𝑡, 𝑓 = 𝑡𝑓 − int 𝑡𝑓
𝜃 𝑓 = 𝑔(𝜑l, 𝑥l; 𝑓)
𝑃 𝑓 = ℎ(𝜃 𝑓)
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Period finding is not a single algorithm
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l Minimized (least-squares) fit to a set of basis functions:

l Lomb-Scargle and its variants

l Wavelets

l Minimize dispersion measure in phase space:

l Means (PDM)

l Variance (AOV)

l String length

l Entropy

l Rank ordering (in phase space)

l Bayesian

l Neural networks

l Gaussian process regression

l Convolved algorithms
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The most important feature: period
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• Many features used to characterize light curves rely on a derived period:

• Dubath et al. (2011) show a 22% misclassification error rate for non-eclipsing 
variable stars with an incorrect period

• Richards et al. (2011) estimate that periodic feature routines account for 75% of 
computing time used in feature extraction

• Deep learning still applied to folded light curves

• Domain knowledge constraints

• RR Lyrae: Blazho behavior (30%), small amplitude cycle-to-cycle modulations 
(RRabs)

• Close binaries, LPVs: cyclic period changes over

multidecade baselines

• Semi-regular variables: double periods, 
multiperiodicity

• ARMA models: quasi-periodicity

• Trustworthiness of quoted periods
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What can we say about period finding
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l No algorithm is generally better than ~60% accurate

l All methods are dependent on the quality of the light curve and show a 

decline in period recovery with lower quality light curves as a 

consequence of:

l fewer observations

l fainter magnitudes

l noisier data and an increase in period recovery with higher object variability;

l All algorithms are stable with a minimum bin occupancy of ~10 (Δϕ = 0.1)

l A bimodal observing strategy consisting of pairs (or more) of short Δt

observations per night and normal repeat visits is better

l The algorithms work best with pulsating and eclipsing variable classes

l LS/GLS are strongly effected by half-period issue (eclipsing binaries)

l Specific algorithms work better with irregular sampling, bright 

magnitudes (containing saturated values), or with performance 

constraints
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Gaussian processes
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• Fundamental idea:

𝑃 𝒚|𝑿, 𝜽,𝝋 = 𝒩 𝜇 𝑿,𝝋 ,𝐊
𝐾l@ ≡ cov 𝒙l , 𝒙@ = 𝑘(𝒙l , 𝒙@ , 𝜽)

• Hyperparameter estimation:

log 𝑝(𝒚|𝑋, 𝜽) = −12 𝒚 − 𝝁 �𝐾�+,(𝒚 − 𝝁) − 12 log 𝐾� − 𝑛2 log 2𝜋

• Prediction:

𝑝 𝒚∗ = 𝒩[𝒎∗, 𝐂∗]𝒎∗ = 𝝁 𝒙∗ + 𝐊(𝒙∗, 𝒙)𝐊(𝒙, 𝒙)+, 𝒚 𝒙 − 𝝁(𝒙)
𝐂∗ = 𝐊 𝒙∗, 𝒙∗ − 𝐊(𝒙∗, 𝒙)𝐊 𝒙, 𝒙 +,𝐊(𝒙∗, 𝒙)�
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Popular kernels
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• Squared exponential:

𝐾�� 𝑥, 𝑥� = exp − 𝑟R
2𝑙R , 𝑟 = 𝑥 − 𝑥�

• Ornstein-Uhlenbeck:

𝐾�� 𝑥, 𝑥� = exp − |𝑟|𝑙
• Periodic:

𝐾� 𝑥, 𝑥� = exp −2 sin
2 𝑟
2

𝑙R

𝐾 ¡¢¡£¤¥¡ =k
¦m,

𝐽 𝑎¦𝑒𝑥𝑝 −𝑐¦𝑟 cos 𝑑¦𝑟 + 𝑏¦exp −𝑐¦𝑟 sin 𝑑¦𝑟
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Autoregressive models
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• Purely random: 𝑥] = 𝑧] where {𝑧]} are iid

• Random walk (Brownian motion): 𝑥] = 𝑥]+, + 𝑧]
• Autoregressive: 𝑥] = 𝛼,𝑥]+, + 𝛼R𝑥]+R +⋯+ 𝑧]
• Moving average: 𝑥] = 𝑧] + 𝛽,𝑧]+, +⋯+ 𝛽]+®𝑧]+®
• ARMA(p,q): 𝑥] = 𝛼,𝑥]+, +⋯+ 𝛼]+o𝑥]+o + 𝑧] + 𝛽,𝑧]+, +⋯+ 𝛽®𝑧]+®
• ARIMA(p, d, q), ARFIMA(p,d, q): 

• (1 − 𝐵)°𝑥] = 𝑧]
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Autoregressive GPs

Matthew J. Graham 28

• A process is said to be autoregressive if the psd of the kernel 
can be written in the form: 

𝑆 𝜔 = 1
∑jm8@ 𝛼j 𝑖𝜔 j R

•Matern kernel:

𝐶³(𝑑) = 𝜎R 2
,+[
Γ(𝜈) 2𝜈 𝑑𝜌

³
𝐾³ 2𝜈 𝑑𝜌

𝑆³(𝜔) = 1
Γ(𝜈)𝜃R[

2𝜎R 𝜋Γ(𝜈 + 12)(2𝜈)[
2𝜈
𝜃 + 𝑖𝜔

([`,R)
R
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Quasar variability as a damped random walk
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l Characterized by variability amplitude and timescale

l Basis for stochastic models of variability

l Deviations noted (e.g., Mushotzky 2011, 

Zu et al. 2013, Graham et al. 2014)

l Degenerate model – can be best fit for a 

non-DRW process (Kozlowski 2016)

dX(t) = −
1

τ
X(t)dt +σ dtε(t)+ bdt    τ ,σ ,t > 0
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More autoregressive – CARMA(2,1)
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𝑑R𝑥 + 𝛼,𝑑,𝑥 + 𝛼R𝑥 = 𝛽8𝑧] + 𝛽,𝑧]+,

(Moreno et al. 2019)
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Periodic quasars?
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Generative vs. discriminative
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• Current statistical models of variability are designed to 
discriminate between classes, e.g. stars/galaxies – p(y|x)

• Better to learn time series (shape) rather than determining 
some parameterizable form – p(y, x)

• Generative approach that supports predictions
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Forecasting
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• Predicting periodic behavior is trivial

• Predict aperiodic (chaos or stochastic) behavior:

• Stock market

• Climate change

• ARIMA, ARFIMA, GARCH models

• Gaussian processes

• Epileptic seizures

• Earthquakes

(Golestani & Gras 2014)
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Deep time series
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(Naul et al. 2018)

• Learn features directly from the data

• Networks for sequential data
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