LSSDS 2019 La Serena, 2019 Aug<u>ust 22</u>

An introduction to time series analysis

Matthew J. Graham Center for Data-Driven Discovery/ZTF, Caltech mjg@caltech.edu

Abbo of Fleury, 10th century CE

A wondrous star in the neck of the Whale

152		HISTORIOLA					
		16	EPHEMERIS				
		No	ovæ Ste	læ i	n collo Ceti,		
	Ab anno 1638, ad annum 1662.						
 .a. i	Obfervay	Anus	Manf. dies	Hora,	OBSERVATIONES.		
nitudo Stellæ.	Phocyllides:	1638	Detenibr. 1. Decymbr. 25.	greg.	Stellam Hanć in Ceto primum deprebendit. Magniuda grat tam nudis galit, mam per I lefcepium, ana Stellat tertit fuleria exce		
	nsrit nterio	pr a	nnann. 175 tur	adens e , 200	ret, challes hiere, & gesta Ceti, m & Non Pifeinm fun: verum fenfibiliter quoque i nor erai Stellis ferunde marminudinis. M.		
	iarta (eti (e	21: qi 15: 75	ilnibe nog! /	storiči Ratorij	dibulà nimitrim acque Lucidà in Capite. rietie. Interim decrefcebat paullatim, afq dam in occafa fao belènca afaaretar Str		
ds deli-	Phocylides G Fullening	1639	Media affine.	nii éi . Dog a	quarts circuler bonores. Postquam Celi sidus Heliace ortum alias fa fer, Galüdiligentissimo increases oculis lust vimus, vidimus os, genam, Mandib. Cet. J		
uð affalfit	Phocylider	1630	Decemb. 7.	1	ard; vicinar circumcirca Stellar, mullum ta nova Srella tunc vestigium observari por Denuò apparuit codem precisi laco		
	Fullenine	1641 1642 1644	Septemb. 23. Septemb. 23. Anguft. circ.	andi a Tarat	mo ante: Ciriùs in confectum non predit. Denuò affulti: Nondum apparuit.		
fquam sp- ebat.	Jungins 1.(1647	Februar. 18. 20. A fulio ad 3	Nov.mg;	Obfervata elt ad occafum ufque beliacum. I tiò magnitudo ejus excitti brita magnitudi Solicitè quidem quafita, fed nufquam fullit.		
	Hevelins	1643	Januar. 3.	9 Vefp.	Major quidem Nodo Lini, & illa in ore C terris hungris; minor ranken Lao. Mana 2 Maginud, extinie.		
		1659	A fulio, Decemb. 14.	Sept uf que 9 V eff.	Prorsis delissis. Major illà adgenam Ceis 4 magn. 5 minor men illà in ore Ceis 3 magn. Colore vors Co fubobfonyo vifa est. Ab boc antem tem re fenfin decrevir, ad occafanyo mfane belia		
tz ma- dinis ex- an-1660	Hevelins	1660	A fulii inisio Septemb. 1. 2. Septemb. 10.	ad finë Sept.	Nufquam apparuit, ut ut ftadioit questia. Inflar fexia & 7 magn. Stellula iduxit. Satis clart affulgebat, inflar Stella 4 magn. re minur ca ad conome Caler rea		
	•		Sept. 18 0 20.	1.0	quanto rubicundus, & obinfus; Luce & c ritare multo inferior Mandibula depreb fa est. Fonalis illein ore Cni; creftebas isame.		
latim cre-	Heveline .	1660	Sept. 27 : 29 30. Octobr. I. Ottob. 4.	Vep. Vep. Vep. ()	Major illà in ore Cesi. Major quidem in ore ; minor samen Mandibu Æqualis fore Mandibula.		
bat.	2 2010-00-0	· · ·	Octob. 18. 20.	2 (11)	Majer Mandibula, imò Lucida Y; miner y aliquanò illà in Candà Ceri Aifral: Pra rea, ne colòre albicantiore, fa estano moltò vidiori, & maoi: vibrani lamine pra		
	· 22	1.	Asie:	calut.	erat. Jupis		

"If the new star were outside the ordinary course of nature, it would tell us little about the constitution of the universe. "

Image credit: AAVSO

A billion time series and counting

- Palomar-Quest Synoptic Sky Survey ٠
- SDSS (Stripe 82) ٠
- Catalina Real-time Transient Survey ٠
- Palomar Transient Factory ٠
- Zwicky Transient Factory ٠
- Pan-STARRs ٠
- SkyMapper ٠
- ASKAP
- ThunderKat (MeerKAT)
- KEPLER ٠
- GAIA
- LIGO •

٠

• GoTo

MeerKAT

ASKAP

• WISE

• OGLE

DESI

•••

SDSS-V

LAMOST

- IceCUBE LOFAR ٠
- LSST ٠
- SKA
- TESS
- ASAS-SN
- MASTER ٠
- DES ٠
- ATLAS ٠
- BlackGEM ٠

4

What we do ask of time series?

Population behaviors

• Characterize, categorize, classify

Outliers

- Extreme sources
- <u>Physical models</u>
 - Predictions

(Cody & Hillenbrand 2018)

Types of astronomical variability

Astronomical classes

Hertzsprung-Russell Diagram

Transient classes

Foundational concepts

A time series is a set of time-tagged measurements: $\{X_i(t_i)\}\$ with observation errors σ_i

Non-IID

• Data is sequential

Homoskedasticity

All errors drawn from same process

Ergodicity

• The time average for one sequence is the same as the ensemble average:

$$\hat{f}(x) = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} f\left(T^k x\right).$$

Foundational concepts - stationarity

- The generating process is time independent:
 - Joint probability distribution is translationally invariant (strong)
 - Mean, variance, autocorrelation are constant (weak)
- Examples:
 - White noise is stationary
 - GSR 1915+215 has ~20 variability states
 - GARCH models where variance is a stochastic function of time
- Nonstationary time series do not have to be stationary in any limit

(Belloni et al. 2000)

Foundational concepts - stationarity

- Transformations to achieve stationarity (constant location and scale):
 - Difference the data:

$$Z_i = X_i - X_{i-1}$$

• Detrend the data: Z(t) = X(t) - f(t)

• Stabilize the variance:

 $Z(t) = \sqrt{(X(t) + A)} \text{ or } \log(X(t) + A)$

Test with ACF

2025

22 August 2019

Foundational concepts - sampling

• Even or regular sampling:

 $y(t) = x(t_0 + n\Delta t)$ where n = 0, 1, ..., m

• Uneven or irregular sampling:

- Bin data onto regular grid: $y(t) = \frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}}$ for $t_{i} \in [t_{a}, t_{b}]$
- Interpolate: linear, spline, Gaussian process
- Continuous time process:
 - Observations are a random sample drawn from a continuous process described by some differential equation:

$$dX(t) = -\frac{1}{\tau}X(t)dt + \sigma\sqrt{dt}\epsilon(t) + bdt$$

Foundational concepts – power spectrum

- Power spectral density tells you everything: $PSD(v) = |\mathcal{F}(x)|^2$
- PSD is Fourier transform of autocorrelation function:

$$PSD(\nu) = \int_{-\infty}^{\infty} ACF(\Delta t) e^{-2\pi i \nu \Delta t} \Delta t$$
$$ACF(\Delta t) = \mathbb{E}[(x_t - \mu)(x_{t+\Delta t} - \mu)]/\sigma^2$$

Discrete FT:

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-2\pi i k n/N}$$
Nonuniform Discrete FT:

$$X_{k} = \sum_{n=0}^{N-1} x_{n} e^{-2\pi i p_{n} \omega_{k}}$$

• The structure function is related to the autocorrelation function:

$$SF(\Delta t) = \sqrt{2}\sigma_s \sqrt{1 - ACF(\Delta t)}$$
$$SF(\Delta t) = 0.742 IQR(x)$$

Time series decomposition

Given any stationary process, Y, there exist:

- a linearly deterministic process, D
- an uncorrelated zero mean noise process, R
- a moving average filter, C

such that:

$$Y(t) = C \times R(t) + D(t)$$

(Wold's Decomposition Theorem (1938))

Different physical processes contribute to deterministic dominance D(t) or stochastic dominance $C \times R(t)$.

Deterministic chaos vs. stochastic?

Common statistical features

- <u>Timescales:</u>
 - Lomb-Scargle
- <u>Variability:</u>
 - von Neumann variability (phase-folded)
 - Stetson K index
- <u>Morphology:</u>
 - Skewness
 - Kurtosis
 - IQR
 - Cumulative sum index (phase-folded)
 - Ratio of magnitudes brighter/fainter than mean
- <u>Trends:</u>
 - Slope percentiles (phase-folded)
- Model:
 - Fourier amplitude ratios
 - Fourier phase differences
 - Fourier amplitude
 - Shapiro-Wilk normality test

Categorization

(Cody & Hillenbrand 2018)

F

Characteristic timescales

(Sartori et al. 2018)

Data-derived classes

EZTF
\mathbb{O}

Class	Description			
CBF	Close binary, full period			
CBH	Close binary, half period			
DBF	Distant binary, full period			
DBH	Distant binary, half period			
dubious	Star might not be a real variable			
IRR	Irregular: catch-all for difficult short-period cases			
LPV	Long period variable: catch-all for difficult cases			
MIRA	High-amplitude, long-period red variable			
MPULSE	Modulated Pulse: likely multi-modal pulsator			
MSINE	Modulated Sine: multiple cycles of sine-wave were fit			
NSINE	Noisy Sine: pure sine was fit, but residuals are large or non-random			
PULSE	Pulsating variable			
SHAV	Slow High-Amplitude Variable, too blue or irregular for Mira			
SINE	Pure sine was fit with small residuals			
STOCH	Stochastic: certainly variable, yet more incoherent even than IRR			

ATLAS PULSE variables

(Heinze et al. 2018)

Periodicity

 $\begin{aligned} x(t,f) &= A_f \sin 2\pi f \left(t - \varphi_f \right) \\ \chi^2(f) &= \sum_n \left(\frac{x_n - x(t_n;f)}{\sigma_n} \right)^2 \\ P(f) &= \frac{1}{2} \left[\hat{\chi}_0^2 - \hat{\chi}^2(f) \right] \end{aligned}$

$$x(t+P) = x(t); f = 1/P$$

$$\varphi(t,f) = tf - \operatorname{int}(tf)$$

$$\theta(f) = g(\varphi_n, x_n; f)$$

$$P(f) = h(\theta(f))$$

Matthew J. Graham

Period finding is not a single algorithm

- Minimized (least-squares) fit to a set of basis functions:
 - Lomb-Scargle and its variants
 - Wavelets
- Minimize dispersion measure in phase space:
 - Means (PDM)
 - Variance (AOV)
 - String length
 - Entropy
- Rank ordering (in phase space)
- Bayesian
- Neural networks
- Gaussian process regression
- Convolved algorithms

The most important feature: period

- Many features used to characterize light curves rely on a derived period:
 - Dubath et al. (2011) show a 22% misclassification error rate for non-eclipsing variable stars with an incorrect period
 - Richards et al. (2011) estimate that periodic feature routines account for 75% of computing time used in feature extraction
 - Deep learning still applied to folded light curves
- Domain knowledge constraints
 - RR Lyrae: Blazho behavior (30%), small amplitude cycle-to-cycle modulations (RRabs)
 - Close binaries, LPVs: cyclic period changes over multidecade baselines
 - Semi-regular variables: double periods, multiperiodicity
 - ARMA models: quasi-periodicity
- Trustworthiness of quoted periods

What can we say about period finding

- No algorithm is generally better than ~60% accurate
- All methods are dependent on the quality of the light curve and show a decline in period recovery with lower quality light curves as a consequence of:
 - fewer observations
 - fainter magnitudes
 - noisier data and an increase in period recovery with higher object variability;
- All algorithms are stable with a minimum bin occupancy of ~10 ($\Delta \phi$ = 0.1)
- A bimodal observing strategy consisting of pairs (or more) of short Δt observations per night and normal repeat visits is better
- The algorithms work best with pulsating and eclipsing variable classes
- LS/GLS are strongly effected by half-period issue (eclipsing binaries)
- Specific algorithms work better with irregular sampling, bright magnitudes (containing saturated values), or with performance constraints

Gaussian processes

• Fundamental idea:

$$P(\mathbf{y}|\mathbf{X}, (\boldsymbol{\theta}, \boldsymbol{\varphi})) = \mathcal{N}[\mu(\mathbf{X}, \boldsymbol{\varphi}), \mathbf{K}]$$

$$K_{nm} \equiv \operatorname{cov}[\mathbf{x}_n, \mathbf{x}_m] = k(\mathbf{x}_n, \mathbf{x}_m, \boldsymbol{\theta})$$

• Hyperparameter estimation:

$$\log p(\boldsymbol{y}|\boldsymbol{X},\boldsymbol{\theta}) = -\frac{1}{2}(\boldsymbol{y}-\boldsymbol{\mu})^{T}\boldsymbol{K}_{\boldsymbol{y}}^{-1}(\boldsymbol{y}-\boldsymbol{\mu}) - \frac{1}{2}\log|\boldsymbol{K}_{\boldsymbol{y}}| - \frac{n}{2}\log 2\pi$$

• Prediction:

$$p(y_*) = \mathcal{N}[m_*, C_*]$$

$$m_* = \mu(x_*) + K(x_*, x)K(x, x)^{-1}(y(x) - \mu(x))$$

$$C_* = K(x_*, x_*) - K(x_*, x)K(x, x)^{-1}K(x_*, x)^T$$

Popular kernels

• Squared exponential:

$$K_{SE}(x,x') = \exp\left(-\frac{r^2}{2l^2}\right), \qquad r = ||x - x'||$$

• Ornstein-Uhlenbeck:

$$K_{OU}(x, x') = \exp\left(-\frac{|r|}{l}\right)$$

• Periodic:

$$K_{\text{celerite}} = \sum_{j=1}^{J} J[a_j exp(-c_j r) \cos d_j r + b_j \exp(-c_j r) \sin d_j r]$$

Autoregressive models

- Purely random: $x_t = z_t$ where $\{z_t\}$ are iid
- Random walk (Brownian motion): $x_t = x_{t-1} + z_t$
- Autoregressive: $x_t = \alpha_1 x_{t-1} + \alpha_2 x_{t-2} + \dots + z_t$
- Moving average: $x_t = z_t + \beta_1 z_{t-1} + \dots + \beta_{t-q} z_{t-q}$
- ARMA(p,q): $x_t = \alpha_1 x_{t-1} + \dots + \alpha_{t-p} x_{t-p} + z_t + \beta_1 z_{t-1} + \dots + \beta_q z_{t-q}$
- ARIMA(p, d, q), ARFIMA(p,d, q):

Autoregressive GPs

- A process is said to be autoregressive if the psd of the kernel can be written in the form:

$$S(\omega) = \frac{1}{\left|\sum_{k=0}^{m} \alpha_k (i\omega)^k\right|^2}$$

• Matern kernel:

$$C_{v}(d) = \sigma^{2} \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\sqrt{2\nu} \frac{d}{\rho}\right)^{v} K_{v}\left(\sqrt{2\nu} \frac{d}{\rho}\right)$$

$$S_{\nu}(\omega) = \frac{1}{\left| \sqrt{\frac{\Gamma(\nu)\theta^{2\nu}}{2\sigma^2 \sqrt{\pi} \Gamma(\nu + \frac{1}{2})(2\nu)^{\nu}}} \left(\frac{\sqrt{2\nu}}{\theta} + i\omega \right)^{(\nu + \frac{1}{2})} \right|^2}$$

Quasar variability as a damped random walk

$$dX(t) = -\frac{1}{\tau}X(t)dt + \sigma\sqrt{dt}\varepsilon(t) + bdt \quad \tau,\sigma,t > 0$$

$$X_{i+1} = X_i e^{-\Delta t/\tau} + G\left[\sigma^2 \left(1 - e^{-2\Delta t/\tau}\right)\right] + b$$

- Characterized by variability amplitude and timescale
- Basis for stochastic models of variability
- Deviations noted (e.g., Mushotzky 2011, Zu et al. 2013, Graham et al. 2014)
- Degenerate model can be best fit for a non-DRW process (Kozlowski 2016)

More autoregressive – CARMA(2,1)

$d^{2}x + \alpha_{1}d^{1}x + \alpha_{2}x = \beta_{0}z_{t} + \beta_{1}z_{t-1}$

Periodic quasars?

Generative vs. discriminative

- Current statistical models of variability are designed to discriminate between classes, e.g. stars/galaxies – p(y|x)
- Better to learn time series (shape) rather than determining some parameterizable form – p(y, x)
- Generative approach that supports predictions

Forecasting

- Predicting periodic behavior is trivial
- Predict aperiodic (chaos or stochastic) behavior:
 - Stock market

• Epileptic seizures

• Climate change

- Earthquakes
- ARIMA, ARFIMA, GARCH models
- Gaussian processes

(Golestani & Gras 2014)

Deep time series

- Learn features directly from the data
- Networks for sequential data

(Naul et al. 2018)