
Symbolic Regression
Ilija’s Army

Group 6

Federico Berlfein, Isabella Toro, Felipe
Castillo, Rosalie Tarsala

1. Introduce the problem (Keppler Analogy) (Isabella)
2. Introduce Symbolic Regression (Rosalie)

a. What is it? Why should it be used?
b. What is genetic programming?

3. What is our goal? Try different packages. Can we recreate this equation easily? Introduce data set
(Federico)

5. What about AI Feynman, they claim to be great and work easily. Not really… there are many
problems, Isabella can rant about AI Feynman here.

6. What if we try Deap algorithm? What do we get? Does it take a long time? Is it frustrating.
a. Graph representation of function
b. Predicted vs actual redshift graph

7. Gplearn: Easy to use right away, but not very easy to control some parameters of the learning
a. Can run the same algorithm and get completely different answers, don’t use the same variables
b. How do different answers compare? Can we even trust these equations?

8. Pysr: Great control over complexity and other aspects of the learning
9. Conclusion: Pros vs Cons of packages, key lessons (Felipe)

Outline

After 4 years and over 40
failed attempts to fit Mars
data to ovoid shapes,

Johannes Kepler
discovered that
Mars orbit was an
ellipse.

In 1601

This is an example of
symbolic regression
i.e. discovering a
symbolic expression to
match a given dataset.

What is Symbolic Regression?
● Regression program that searches for best expression and the optimal

coefficients simultaneously
● Choose base set of functions/operators and fitness metric
● Useful when you:

○ Want transparent investigation of correlations in a data set
○ Want to discover new physical laws empirically (and have indefinite

computing time)

What is Genetic Programming?
● Computational design concept that takes inspiration from biological

evolution.
● Start with random population

○ Random mutation and combination of two individuals (breeding)
○ Fittest individuals are the base for next generation

● Increased complexity without improvement is penalized

Goal
● Use Symbolic Regression to find relationship between redshift and

magnitudes

● Use 4 different packages that include Logistic Regression
○ Investigate their differences.
○ Does one of them work best?

● What kind of equations do we get? Are they interpretable?

The Data
● To explore logistic regression, we

used a dataset of over 4000
objects and their known
magnitude and redshift

● A known paper used logistic
regression to find such a
relationship, can we recreate it?

Target!

AI Feynman
Silviu-Marian Udrescu and Max Tegmark

Symbolic regression algorithm that
combines neural network fitting with
a suite of physics-inspired
techniques.

From 100 equations
of the Feynman

Lectures it discovers
all of them, while
other commercial

software only
discovers 71

AI Feynman: A physics-inspired method for symbolic regression, Silviu-Marian

Udrescu and Max Tegmark, Science Advances, American Association for the

Advancement of Science Vol. 6 Nº6, 2020.

Eureqa

How does
it work?
● Dimensional

Analysis
● Polynomial Fit
● Neural Network

import aifeynman

aifeynman.run_aifeynman("./path/",

"data.txt" , BF_try_time ,

BF_ops_file_type, polyfit_deg=3,

NN_epochs=500, vars_name,

test_percentage)

Number of
epochs for the
training

Seconds for
each brute

force call

File containing the
symbols to be used

“19ops.txt” “14ops.txt”
“10ops.txt” “7ops.txt”

Data has to be
imported as .txt

¿Simple?

But
does it
work?

★ Issues running the module from Google Colab
★ Need of a Fortran compiler, this is incompatible with M1

chips and/or latest MacOS versions.
★ Extremely poor documentation.
★ Only works when cloning the repo from GitHub (several

installation error when trying other methods)

Output has 5
documented

attributes, but
the real output

has 6.
???

Outdated examples don’t
work with newer version

of the code
No one helps with the

issues of the code

Here i’ll show results

Is it really a 100% success
rate like in the beggining
Why not

This module had 100% success rate for physics equations but
does it work with our photometric redshift data?

★ ~5 hours run
★ 40-60s brute force
★ 7 and 14 different

operations
★ 400 generations

Top 2
best
results

Top 2
worst
results

Top 2 best results

Top 2 worst results

¿Overfitting?

¿Lack of
symmetries? ¿More

Hyperparameters?

Physical Units

Can we do
better?
What options
do we have?

Distributed Evolutionary

Algorithms in Python

Function Tree Generated with Low Mutation Probability (0.1)

Key:

u (ultraviolet)

g (green)

r (red)

i (near infrared)

z (infrared)

Function Tree Generated with High Mutation Probability (0.5)

Detail:

Actual vs Predicted Redshift Using Test Set

Train MSE: 0.009436633746104504
Test MSE: 0.011748787926479643

(Has extreme outliers)
Train MSE: 0.010570410476361494
Test MSE: 0.009859116739871634

Genetic Programming in Python

What about the equations we get?
User friendly and easy to use right away

gplearn allows to penalize more complex solutions

Key Questions

● What kind of equations do we get for different
complexity?

● Do they resemble the equation we are trying to recreate?
● What variables are used/not used?
● Are the results better for more complex solutions?

Complexity of Equations

Low Complexity Medium Complexity High Complexity

Reference
Eq.

Interpreting Equations
● Even though we have analytic solutions, they can be hard to

interpret!
● More complex solutions ≠ better solutions
● Some solutions don’t even use the same variables, but can yield

very similar results
● This raises the question: how can we trust the relations that we

get?
● What if a strict analytic relation does not exist?

All things to keep in mind when doing symbolic regression

PySR: Great control over complexity

maxsize : Max complexity of an equation.

maxdepth : Max depth of an equation

warmup_maxsize_by : Slowly increase max size from a small number up to the maxsize

constraints : This enforces maxsize constraints on the individual arguments of

operators. E.g., `'pow': (-1, 1)` says that power laws can have any complexity left

argument, but only 1 complexity in the right argument. Use this to force more

interpretable solutions.

nested_constraints : Specifies how many time a combination of operators can be nested

complexity_of_operators : For example,`{"sin": 2, "+": 1}`

complexity_of_constants : Complexity of constants.

complexity_of_variables : Complexity of variables.

PySR: More complex, little improvement

Some equations
Complexity Equation

1

7

14

31

(Which is actually the mean of the training set)

Max complexity = 35
Max nesting = 24

Max complexity = 40
Max nesting = 28

Krone-martins’ prediction on our dataset

Kernel density estimation from Krone-martins’
equation

Kernel density estimation from PySR
complexity 14 equation (max comp 40)

Kernel density estimation from Krone-martins’
equation

Kernel density estimation from PySR
complexity 13 equation (max comp 35)

Violin plot from the paper

Complexity 14 (max 40)

Large residuals at low redshift

Complexity 13 (max comp 35)

Centrated on zero with higher dispersion

★ Ease of use (once you get all the installation issues out of the
way)

★ Great predictions for a wide range
of physics equations

★ Extremely poor documentation
★ Not many possible hyperparameters to

tweak
★ Good predictions w/ small errors are

long and complicated expressions

★ Highly customizable
★ Tree based visualization is

possible

★ Difficult and long expressions are hard
to simplify

★ User friendly and easy to use
★ Variety of different expressions

that are good predictions

★ Needs more hyperparameter tuning
★ Controlling complexity isn’t as easy

★ Fast and Robust
★ Good control over complexity

configuration.

★ Poor documented but straightforward to
read options direct from the code

Module

AI
Feynman

Pros Cons

General Conclusions

★ Penalization over complexity leads to time
efficient solutions (better MSE in less time,
less space to explore)

★ Super complex solutions are difficult to
explain, it’s better to keep it simple.

★ A better MSE can happen at the cost of
weak prediction on a range for a better
prediction on another ranges.

★ Symbolic Regression sounds great
and promising but it’s not simple at all.

Many Open
Source options,

just choose
wisely

Conclusions

About the packages

● AI Feynman:
● DEAP:
● GPLearn:
● PySR: The most robust overall (and the newest)

About complexity and explainability of the equations

● Penalization over complexity leads to time efficient solutions (better mse in
fewer runs)

● Super complex solutions are difficult to explain, it’s better to keep it simple.
● A better mse can happen at the cost of weak prediction on a range for a better

prediction on another ranges.

About the packages

● AI Feynman:
● DEAP:
● GPLearn:
● PySR: The most robust overall (and the newest)

About complexity and explainability of the equations

● Penalization over complexity leads to time efficient solutions (better mse in
less time, less space to explore)

● Super complex solutions are difficult to explain, it’s better to keep it simple.
● A better mse can happen at the cost of weak prediction on a range for a better

prediction on another ranges.

Conclusions

Thank you!

